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< USING REDUCED COORDINATES

ABSTRACT This research is concerned with the idea of reducing a large
time-dependent problem, such as one obtained from a Finite-Element
discretization, down to a more manageable size while preserving the most
important physical behavior of the solution. This reduction process is
motivated by the concept of a projection operator on a Hilbert Space,
and leads to the Lanczos Algorithm for generation of approximate
eigenvectors of a large symmetric matrix. The proposed reduced
coordinate algorithm is developed, compared to related methods, and
applied to some representative problems in mechanics. Conclusions are
then drawn, and suggestions made for related future research.
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Chapter 1: Introduction

Overview of the Research

Many important problems in computational mechanics cannot be solved on modem
sequential computers. Some of these unsolved cases include models with excessive
memory requirements, ones that require inordinate amounts of computer time, and others

that are simply numerically intractable. Some important problems suffer from more than
* one of these flaws. In many cases, technical improvements in computer architecture have

reduced the size of the class of unsolved problems. A good example is the widespread use

of virtual memory machines, which has eased physical memory requirements for many
large problems. Similarly, parallel processing architectures will be used to solve other

problems that require excessive computational cost on a sequential processor. But
increasing the size of computer memory or increasing the number of processing units are
not the only ways to achieve a satisfactory solution to a large, complex problem. Another

useful method is to reduce the size of the problem so that the reduced model is small
enough to solve on an appropriate computer, and yet the important engineering behavior of
the model is preserved in the reduced problem.

Examples of this reduction process are abundant in engineering mechanics: any
continuum problem that is solved via a discretization process involves the reduction from
an infinite-dimensional problem to a finite-dimensional one. Examples of this
simplification process include the Finite Element Method, Finite Difference Methods, and

the use of truncated Fourier series. Many of these reduced problems are still too large to
solve on modern computers, and so an attractive alternative is to find a way to reduce the
size of the problem even further.

The research presented in this document revresents an attempt to derive an algorithm for
the solution of many large problems via a reduction in the number of independent solution

coordinates. The mathematical principle underlying this reduction is that of a projection,
and the algorithm is developed from this standpoint. Many of the basic principles of the
proposed algorithm are widely used in engineering mechanics, and in that sense this
research is not entirely new. However, many of me derivations and applications presented
are quite different from those that have appeared in the literature, and represent an attractive

alternative formulation for manv otherwise comtputanonallv intractable prohlems.
N,,•"
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The types of model reduction discussed in this research are very useful in the solution
of many important engineering problems, but they are not intended to be a unified scheme

to solve any large problem. There are undoubtedly many interesting models in mechanics
that are not solvable using these coordinate reductions, and in these cases, the reduction
should not be used. In many situations, the analyst will have sufficient physical intuition
about the problem to be able to judge whether the reduction is warranted. In others, thea.-

proposed method can be used as a tool for preliminary analysis or design in conjunction
with more expensive unreduced methods.

Finally, the use of reduced methods does not have to be confined to situations
involving small computers or slow processors. The techniques developed in this document
are appropriate for the solution of extremely large problems that are presently intractable on
even the largest supercomputers. In addition, these coordinate reduction schemes often
produce a mathematical problem that is more well-conditioned than a competitive unreduced

formulation, and are thus more stable or accurate even in cases where the larger problem
can be solved for a similar cost. In short, the research presented herein has the potential to
become a useful and efficient part of the arsenal of numerical schemes that form the basis of

*!. modem computational methods in engineering.

Organization

This research is organized into a number of topics that comprise the development and
application of a proposed reduced coordinate algorithm for the solution of large nonlinear
problems in mechanics. It is assumed that the reader has some knowledge of the basic

5" principles of mechanics, operator theory, and numerical analysis.

This first chapter casts the proposed research into an appropriate computational
perspective, previews the contents of the other chapters, and establishes conventions used
in this document.

The second chapter introduces the underlying mathematical theory .or !he proposed
algorithm. The basic principles of proiections onto a subspace are introduced, and set into
the framework of the Projection Theorem, which is of fundamental importance in Applied
Mathematics. Applications of the Projection Thieorem are introduced, in born rinnte- inu

0
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Chapter 1: Introduction

infinite-dimensional settings. Next, the Fredholm Alternative Theorem is presented, along
with applications and geometric interpretation. Finally, the development of Krylov

methods for generation of: 1e approximate spectrum of a linear operator are presented. In
particular, the development and application of the Power Method and the Lanczos

Algorithm are presented in this chapter.

The third chapter is devoted to the development of the proposed algorithm for the

solution of large time-dependent problems using projection coordinates. The development
is motivated by the cost of solving large approximate problems given by finite-element

discretizations of time-dependent continuum boundary-value problems. In this setting, the

finite-element approach leads to large systems of coupled ordinary initial-value problems,
which are generally solved by a temporal integration scheme, such as Newmark's Method.

This latter algorithm is developed in several different forms. Once the fully discretized

initial-boundary-value problem is developed, the proposed algorithm is shown to be a

natural way to solve these problems using projection methods. In this section, this reduced

coordinate algorithm is examined in light of computational considerations, and is compared
to other established methods in the setting of the theory developed to this point.

The fourth chapter consists of the application of the reduced coordinate algorithm to

some representative problems in solid mechanics. In each case, the proposed algorithm is
compared to direct (unreduced) solution schemes on the basis of complexity and

computational effort.

Finally, the fifth chapter is devoted to general conclusions and proposed avenues for
further study in the field of reduced coordinate models. The list of references for the

document follows this chapter.

Conventions

There are a number of important symbolic conventions that will be used in this

document in order to simplify the requisite notation. Any exceptions will be noted
whenever an inconsistent nomenclature is introduced. For the most part, the following

conventions will be used:

S..S



Chapter 1: Introduction Page14

(1) scalars will be denoted by lower-case Greek letters, such as (X, f3j+i. The scalar

components of a vector or matrix will typically be written as subscripted

Greek letters.

-'-, (2) vectors will be denoted by lower-case Roman letters, such as qj, v. Columns of

matrices are vectors, and will usually be the subscripted lower-case version
of the same letter used for the matrix.

(3) matrices will be denoted by upper-case Roman letters, such as A or Q. Symmetric

. matrices will generally be represented by symmetric letters like A or T, but

established conventions may violate this rule. A subscripted matrix like Qj

may be used to emphasize unusual matrix dimensions.

(4) operators will also be represented by upper-case Roman letters, just like matrices. In
the case of finite-dimensional operators, this is a natural convention, since

these operators can easily be identified with their corresponding matrix. For
infinite-dimensional operators, the context will be adequate to avoid

confusion.

* ."(5) vector spaces will be denoted by bold upper-case Roman Letters, such as H or M -L.

Another use for these characters will be to denote domains of functions,
which are often vector spaces.

A" ". Figures, equations, tables, and definitions will all be listed in terms of the chapter

number, and then by order within the chapter. All chapters will have their own page
*A'" numbering scheme, with the number to the left of the decimal point indicating the chapter,

and the page number occurring after the decimal point.

Finally, references will be presented, in parentheses, by the last name of the primary
4,." author and the reference date, e.g., (Lanczos, 1950). References will be collected at the

end of the work, listed in alphabetical order.

_'--" .

h-f"'
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Chapter 2: Mathematical Preliminaries

Chapter 2: Mathematical Preliminaries

4Introduction

The basic principle underlying this research is that of a projection of some complicated

problem onto a simpler setting. The precise mathematical formulation of this idea involves

the concept of a projection operator on a Hilbert space. This topic may seem recondite to

most engineers, but can in fact be understood in terms of the generalization of the

'T topological and algebraic properties of ordinary three-dimensional space. The first part of

this chapter develops the required theory from exactly this standpoint, and culminates in the

,K. Projection Theorem, which is one of the most important results of modern applied

mathematics, and which will be used often in subsequent sections of this research.

* Once the concept of a projection operator on an abstract space is defined, the

mathematics of spectral theory can be developed to explore the idea of which projections
are appropriate for a given problem. The second part of this chapter is devoted to this line

of reasoning, and results in the Fredholm Alternative Theorem. This theorem classifies

which problems are solvable and also demonstrates the importance of different parts of the

, spectrum in the solution of the reduced problem.
=.4 ..

.4, The spectrum of an operator can be used to determine appropriate subspaces for
projection solutions of the large problems that arise in Finite-Element modelling, but the

actual construction of these subspaces is an iterative process that must be implemented on

-. ' the computer. One of the most useful classes of numerical algorithms for generating these

approximating subspaces can be developed by considering a special subspace called the

AKrvlov Subspace. Two particular schemes for constructing approximations based on this

Krylov Subspace, namely the Power Method and the Lanczos Algorithm, are derived at the

end of this chapter.

%..
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Chapter 2: Mathematical Preliminaries

The Definition of a Hilbert Space

There are several concepts that we associate with vectors in ordinary three-dimensional

Euclidean space, R3. The first of these is the concept of length or norm, which can be

expressed in terms of the distance between a given vector v and the zero vector o. In R3,

the length of a vector v with components vi, v2, and V3 is given by:

lvll = (v12 + v22 + V32)1 /2 = <v,v>l/2  Eqn2.1

where <v, v> is the usual inner product for R3, namely <v, v> = vTv. This length in R3 is

thus the square root of the inner produ t of a vector with itself, and this concept of inner

*" product is another fundamental topological property that we associate with three-

4 dimensional space R3. In addition to providing the notion of length, the inner product also

defines the angle between two vectors, via the relation:

<u, v> = II u 1III v II cos(0uv) Eqn 2.2

Finally, our physical intuition of space tells us that it has no "holes", in that any convergent

sequence of vectors in R3 tends to a limit vector that is also contained in R3. In an abstract

setting, this property is termed completeness, and this term agrees with the intuitive

connotation of "complete" as meaning "whole" or "entire".

In summary, we note that R3 is a complete normed inner-product space, and the norm

(length) function is defined in terms of the inner product. These concepts characterize our

physical intuition about R3, and they are easily generalized to n-dimensional Euclidean

space Rn, or to abstract linear vector spaces S of arbitrary dimension. It is exactly these

concepts which underlie the definition of a Hilbert Space:

Definition 2.1: A Hilbert Space is a complete normed linear vector space with the norm
induced by an inner product.

The main concept to remember about a Hilbert space is that it is an attempt to generalize the

topological behavior of familiar three-dimensional space R3 to vector spaces of higher
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dimension. In particular, because a Hilbert space is endowed with an inner product, the
concept of the angle between two vectors (recall Eqn 2.2) is preserved. In particular, the
concept of "perpendicularity" is generalized:

Definitio .2: Two vectors u and v in a Hilbert space H are termed orthogonal if their
inner product vanishes (i.e., <u, v> = 0)

A subset M of a linear vector space S may be a vector space in its own right. In this case,
the subset is referred to as a subspace, or a linear manifold (often abbreviated to simply
"manifold" when the context of linearity is clear):

Definition 2.3: A set M in a linear vector space S is termed a subspace (or a jj

manifold) if, for all vectors u and v in M, and for all scalars a and 13, the vector

(ctu + jPv) is also in M. (Some concrete examples of finite-dimensional manifolds

are shown in Figure 2.1)

2-Dimensional Manifold
in 3-Dimensional Space

1-Dimensional Manifold
in 2-Dimensional Space

Figure 2.1: Examples of Linear Manifolds

Note that a linear manifold necessarily contains the zero vector (choose t = 13 = 0), and
U.-

thus "inherits" an identity as a vector space from the parent space S. If the parent space is
complete, and the manifold 'considered as a vector space) is also complete, then the

manifold is referred to as closed. Two important classes of manifolds are always closed:
finite-dimensional manifolds, and manifolds that are "perpendicular" to another manifold.

is catter,:ase >ixmtrtant enough (o warrant a definition:

,P L



Chapter 2: Mathematical Preliminaries

Definition .4A: If M is a linear manifold in a Hilbert space H, then the set M I~ (the
-" linear manifold orthogonal to M) is defined as consisting of all vectors in H that are

orthogonal to every vector in M. This set M I is termed "M-perp", to indicate that

the whole manifold is perpendicular to M

Another term for M I is the orthogonal complement of M. Figure 2.2 illustrates the

orthogonal complements M for the types of manifolds shown in Figure 2.1.

'M.,

.. ... . i. ......

.. 1-Dimensional Complement
1-Dimensional Complement in 2-Dimensional Space
in 3-Dimensional Space

Figure 2,2: Examples of Orthogonal Complements

The Proiection Theorem
* °

°

,

-Closed linear manifolds in a Hilbert space are the setting of the following theorem, which is

among the most important in Applied Mathematics (Stakgold, 1979):

Theorem 2.1 - The Projection Theorem. Let M be a closed linear manifold in a

1Hilbert space H. Every vector u in H can be expressed uniquely as the sum
".': u = v + w

where v is a vector in M and w is a vector in M . The vector v is termed the

orthogonal projection (or simply the proection) of u on M, and the vector v can be

characterized as the unique vector in M that is closest to u.

V"
-U1
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Chapter 2: Mathematical Preliminaries Page.5

It is important to note the terms "orthogonal" and "closest" in the statement of this theorem.

The setting of the Projection Theorem is a Hilbert Space, whose distinguishing feature is its

inner product function. This inner product induces the concept of angle between vectors in

the space, including the important special case of perpendicularity between vectors. The

concept of "closeness" of the vector v to the vector u is defined in terms of the norm of the

error u - v, and this norm is given by the inner product as well. The "closest" vector v to u

is the one that minimizes the norm of the error u - v. Thus the terms "orthogonal" and

"closest" have precise meanings in terms of the underlying inner product on the Hilbert

Space H, and an application of the Projection Theorem in practice means that, on some

level, a minimum-norm problem is being solved. This concept will appear again and again

throughout this document. The geometric interpretation of these ideas for three-

dimensional space is shown in Figure 2.3.

Figure 2.3: Inte~pretation of the Projection Thieorem

Given a closed linear manifold M, a Projection Operator P can be defined by the action of P

on any arbitrary vector in H. If u = v + w is a vector in H, and the vector v is the

- . orthogonal projection of u onto M (whose existence and uniqueness is guaranteed by the

. Projection Theorem), then the projection operator P can be implicitly defined by its effect

on u, namely Pu = v. This operator merely projects any vector in the space onto the

manifold M, which results in an error w =(I - P)u, where I is the identity operator. This

4°-."

-.'p2
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Chapter 2: Mathematical Preliminaries Page.6

last relation also defines the projection operator for M --, namely (I - P). Thus the

decomposition of u into orthogonal components v and w can be written in terms of

projection operators:

u = v+w = Pu + (I-P)u Eqn2.3

Note that any projection operator satisfies pk = P for k > 0, since the projection onto the

subspace need only be done once. (Such operators are termed idempotent .

The Projection Theorem has a geometrical interpretation that is important in the application

of approximation theory. The vector u is to be approximated by some vector v in M, and

this introduces an error vector e = u - v. This approximation v and error e implicitly define

"S two manifolds, as shown in Figure 24-u
ee

hi~~ 
~~~ . ...........,,...

_- vector v in M vector v inM

'"vector e in N-L vector e in :X.

M- . Figure 2.4: Approximation Manifolds

S(1) The manifold M containing the approximation v. In the problem of the

;.- approximation of functions, this manifold is often spanned by a basis of

" interpolating functions, so M is sometimes called the space (subspace) of "basis"

¢ functions.

(2) The manifold that is perpendicular to the error vector e. This manifold will be

termed N, and will be associated with the projection operator Q. Every choice of an

independent vector w from N gives an equation <e, w> = 0 that can be interpreted as

a "test" for a vanishing error component. From this interpretation, the manifold N is

often termed a space of "test" functions.

I
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Chapter 2: Mathematical PreliminarieN

The general problem involves the approximation of u by v, and the criterion for the

selection of this approximation v is the projection relation Q(e) = Q(u - v) = 0. This type

of formulation is often encountered in applications (the weak formulations of Lagrangian
Mechanics that lead to the Finite Element Models in Chapter 3 and 4, for example), and

there are many schemes for choosing the manifolds M and N. What is important here is
the realization that the Projection Theorem tells how to choose N in order to minimize the
norm of the error u - v. This minimum-error solution is obtained by taking e = u - v

perpendicular to the manifold M, which is equivalent to choosing N = M. In this case,
the space of basis functions and the space of test functions coincide, and the error is
minimized in the natural norm for the problem. This type of approximation is termed a

Galerkin Approximation, and such approximations are obviously Projection Solutions, in
that they involve the projection of the problem onto an approximating subspace.

Proiections Onto a Subspace (Matrix Case)

Let x E Rn, y e Rm, andQ c-Rnxm. with m5 <n. When we write x = Qy, we are saying

that x is a linear combination of the columns of Q, or that x lies in the column space of Q,
which is denoted CS(Q). To see this fact, simply partition the matrix Q into its columns

[qi, q2, ..., qmI], the vector y into rows (yi, N2, , 4fm)T, and form the product:

Qy = lql + 4t2q2 + ... + iymqm

Thus x = Qy is just a linear combination of Q's columns. This provides a convenient

shorthand for expressing any vector in CS(Q): as the elements of y vary over all real
numbers, the vector x = Qy ranges over all the vectors in CS(Q). We will assume that the

dimension of CS(Q) is m, so that Q's columns are linearly independent, and furthermore,

that we have orthogonalized and normalized Q's columns so that QTQ = In, the identity

matrix of order m. Note that QQT t In, unless m = n, since the rank of the product of two

matrices cannot be larger than the rank of either one, and rank(Q) = dim(CS(Q)) = m.

With this convention, we see that CS(Q) forms an m-dimensional linear manifold of Rn.

and that Q's columns form an orthonormal basis for this manifold. In this case, the
Projection Theorem implies that any vector w can be decomposed into a component u that

I
! , *** ~
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lies in CS(Q), and a component v that is in CS(Q) -', the orthogonal complement of the

column space of Q, as in Eqn. 2.3:

w = u + v u CS(Q),VeCS(Q)-- Eqn 2.4

The vector u is given by QQTw, and the vector v by (I - QQT)w. By comparing Equations

2.3 and 2.4, we can see that the nxn matrix QQT is a projector onto CS(Q), and (I - QQT)

is a projector onto CS(Q)-L. A geometric picture for the cases n =2 and n =3 is shown in

Figure 2.5.

(I'. -' ~

w -Q( )w

'II~

hree-dimensional case Two-dimensional case

Figure 2.5: Examples of Vector Projections

If A is an nxn symmetric matrix and Q a matrix with m orthonormal columns, then an

approximate solution x of the system Ax = f can be sought in the column space of Q by

solving the problem AQy = f. Unfortunately, this problem has n equations and m
unknowns, and thus is inconsistent, in general. The projection of this problem onto CS(Q)

could be obtained by multiplying by the projector QQT to give the matrix equation

QQTAQy = QQTf, but this is an mxm problem embedded in n-dimensional space. A better

approach would be to simply multiply the equation AQy = f by QT to obtain the desired

. .. .



Chapter 2: Mathematical Preliminaries

relation QTAQx = QTh, which is an mxm system in r-dimensional space. This is a
Galerkin approximation, since the approximate solution space CS(Q) is the same as the

projection space.

It is appropriate at this point to conjecture on the criteria that would make the CS(Q) a
good" approximate solution space. At the very least, we would like to satisfy:

(1) QTAQ has to somehow be a "good" approximation to A

(2) QTAQ should have some simple structure (i.e. banded, triangular, etc.)
(3) It should be economical to form Q, or to add vectors to Q to increase the rank

(and hence the accuracy) of the projected matrix QTAQ.

Solvability Conditions

If we are going to solve operator equations like Ax = f via projection methods, then some
consideration must be given to the problem of determining the conditions under which the
operator equation is solvable. These solvability conditions can be phrased in terms of inner
products, and the concept of projection operators can be used to generate approximate

solutions of Ax = f even when the solvability conditions are not satisfied. In the following

development, the operator A will be taken to be self-adjoint, in that <Au, v> = <u, Av>.
" '*' Extensions of this theory to the non-self-adjoint problem can be made, but they are not

needed at the present stage of this research, and the nomenclature gets more complicated.

When the operator A is defined over a domain in a Hilbert Space, the set of all vectors in
", ~ this domain that satisfy Av = 0 is called the Null Space of the operator A, and is denoted by

NS(A). The set of all vectors y = Ax is called the Range of A. (We will be concerned with

operators whose domain and range are both subsets of the same Hilbert Space H.) If the
operator equation Ax = f is to be solvable, then the vector f must be in the range of A, so

that, at the simplest level, a solvability condition is merely any condition that characterizes
the range of A. If the equation Ax = f is solvable, then the inner product equation

<Ax, v> = <f, v>

is satisfied for any vector v, as long as x is the desired solution. In particular, if v is in
NS(A), then:

<f, v> <Ax, v> = <x, Av> = <x, O> = 0

.V
7 OpQ ~-'
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since A is self-adjoint, and Av = 0 for any v in NS(A). This relation places an important
condition on the vector f: if the self-adjoint operator equation Ax = f is to have a solution,

then a necessary condition for this solution to exist is that the inner product <f, v> vanish

for any vector v in the null space of A. In the terminology of the last section, if P is the

projection operator onto the null space of A, then Pf = 0 is a necessary condition for a

solution of Ax = f to exist. If this condition is satisfied and NS(A) is not empty, then the

solution of Ax = f will be non-unique. In that case, if x is a solution, then

A(x + v) = Ax + Av = f +0 = f

so that x + v is also a solution for any v in NS(A).

An obvious question arises: what if the equation Ax = f ha to be solved, and yet f is not

orthogonal to the null space of A? Can we "set our sights lower" and find some
* approximate solution to a related problem? This question can be answered simply here.

Consider the new problem obtained by projecting Ax = f onto the orthogonal complement

of NS(A):

(I-P)Ax=(I-P)f or Bx=g
-"

Here, the operator B = (I - P)A is the projection of A onto this complement space, and the

vector g = (I - P)f is the projection of f onto the same space. It is easy to see that B and A
have the same null space, so the necessary condition for Bx = g to be solvable is that
<g, v> = 0 for any vector in NS(A). Since g is orthogonal to NS(A) by construction, this

condition is trivially satisfied. Thus it appears that the approximate problem Bx = g can be
',

solved, though in order for the approximation to be accurate, the error Pf = f - g in the
right-hand side must somehow be unimportant.

The Spectrum of an Operator

There is an extremely important type of null space that arises in applications. The operator

A is taken (as usual) to be self-adjoint, and the null space of the operator (A - XI) is sought.

where X is some real number. The set of all numbers X such that the operator equation

has (A- XI)u = 0

-. has non-trivial solutions is called the Point Spectrum of A. (If A is a matrix operator, the

-0
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point spectrum is often simply called the spectrum of A). Any such number X in the point

spectrum is termed an eigenvalue, and the corresponding nontrivial solution u is called an

,igenvector, the pair (X u) is termed an eigenpair. For a finite-dimensional operator A,

the set of eigenvectors of A forms a basis for the underlying (finite-dimensional) Hilbert

Space, and can be chosen to form an orthogonal set. Henceforth, when we speak of the

eigenvectors of a self-adjoint operator A we will assume that this orthogonalization has

already been performed, and in fact that all the eigenvectors have been normalized to unit
length. Then the set of eigenvectors of A can be taken as an orthonormal basis for the

underlying Hilbert Space H.

It is worthwhile to examine the solution x of the n-dimensional operator equation Ax = f in

the light of the existence of an orthonormal set of eigenvectors of A. If we denote these

eigenvectors by Uj, and the corresponding eigenvalues by Xi, then both the solution x and

the data f can be expanded in terms of the ui:
n n

xX ji f= Tuu. i Ui f - . Tli ui
1=1 j=1

With these expansions, the equation Ax = f can be written in terms of A's eigenvectors:
n i n

Ax = Al i ui = Xi i ui = T ui
i.=-1 i==1

The identification of each component of the sum gives the coefficients of the solution x:

1= i/i Eqn 2.5

This is an extremely important result: the coefficients of the solution of Ax = f occur in

inverse ratio to the eigenvalues of A. This means that, for a general distribution of the

coefficients of f, the most important eigenvalues in terms of approximating the solution x

are the ones with the least magnitudes, since they contribute the largest effect on the

components of x. In other words, given a random distribution of vectors f, an

approximation to the solution of Ax = f based on the eigenvectors associated with the

minimal eigenvalues (in modulus) would be expected to give more accurate results than one

based on the eigenvectors associated with the maximal eigenvalues. This bias towards the
minimal eigenvalues would become more pronounced as the ratio of the moduli of the

.1', extreme eigenvalues In/4. becomes large, where Xi and Xn are the minimum and

A l
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maximum eigenvalues, respectively (in terms of their magnitudes). This ratio I.n/?,Il

represents the "spread" of the eigenvalues of A, as shown in Figure 2.6:

Imaginary Axis

Symmetry ,f A => Eigenvalues on Real Axis

I I I I I I -Real Axis

X1 3 X X. Xn

Figure 2.6: Eigenvalues for Positive-Definite Matrix A

If the ratio l.n/2.i I is large, the transformation A induces a wide range of characteristic

"scales" on the data f and the solution x, and this existence of "multiple scales" may cause
numerical problems for finite-precision calculations involving the matrix A. For this
reason, this ratio is also known as the (2-norm) Condition Number of the matrix A, since
whenever this number is large, the matrix is potentially ill-conditioned.

'Si Finally, the maximal eigenvalue Xn defines a norm on the set of nxn symmetric matrices A

that is termed the spectral radius p(A). This norm is the natural extension of the norm

defined on R3 by Equation 2.1, in that it measures the stretch induced by the

transformation A on vectors in Rn, because it is equivalently defined by:

p(A) = ?.n = max (11 Ax 11/II x I1)

where the maximum is taken over all x in Rn, and II x 112 = xTx = <x, x>.

The Fredhoim Alternative Theorem

If ( ., u) is an eigenpair of A. then it is easy to see that the null space of (A - Ml) is not

empty, since at least it contains u. In this case. the operator equation (A - kl)x = f must

[• satisfy the solvability condition <t. u> = 0! If 1 , n% an eigenvalue of A, then the null

a"

4*
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space of (A - XI) is empty by definition, and so there are no solvability conditions that need

to be placed on f. Thus the behavior of the operator equation (A - XI)x = f depends very

strongly on whether the parameter )X is an eigenvalue or not. These two alternatives are

contrasted in the following result, which is known as the Fredholm Alternative Theorem.
The statement of the theorem below is similar to that found in (Noble, 1977), and it holds

only for finite-dimensional Hilbert Spaces. A similar result can be stated for so-called
compact operators on an infinite-dimensional Hilbert Space, but the definition of

compactness is beyond the scope of this section. The important interpretations of this

theorem for the purposes of this research hold for all the Hilbert Spaces that underlie this
research (namely the infinite-dimensional solution space for the continuous physical

problem, as well as the finite-dimensional vectors spaces populated by the Finite Element

matrices that will be discussed in Chapters 3 and 4).

Theorem 2.2 - The Fredholm Alternative Theorem. Let (A - XI)x ; f be a set of n

linear equations in n unknowns, where A is a symmetric matrix and X a given
real number. Then exactly one of the following alternatives is true:

(1) . = .i, where Xi is an eigenvalue of A, in which case a solution x exists if and

only if the condition <f, ui> = 0 holds for every eigenvector ui associated with

the eigenvalue Xi. In this case, infinitely many solutions exist, each of the form

x + aui, where a is an arbitrary real number and ui is any eigenvector associated

with the eigenvalue .i.

(2) X is not one of the eigenvalues of A, in which case the unique solution x can be

written as:
4.. n

x = ( {<ui, f>/( -Xi)} ui
i=l

where (X , ui) are the eigenpairs of A and the ui are taken to be an orthonormal

set.

This relation is important because it sums up the conditions under which the equation Ax=f
has a solution, and also because it shows how the solution depends on the eigensystem of

;.t-
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A, as well as the data f and the parameter X. It is easy to see that the expansion of x is most

dependent upon the eigenvalues that are closest to the parameter X. In mechanical

applications, this scalar X has the interpretation of a frequency, and the dependence of the

solution on the nearest eigenvalues leads to the familiar phenomenon of resonance.

The Power Method

Probably the most commonly known method for finding a part of the spectrum of a matrix

is the Power Method. Under the right conditions it can be used to find exactly one

,* eigenpair of a matrix A, namely the eigenvalue of largest modulus and the associated

eigenvector (often termed the dominant eigenpair). A first draft of an algorithm for the

implementation of the Power Method looks like:

Algorithm 2.1 : Power Method

Finds: the dominant eigenpair (Xn, Un) of a matrix A

Given: initial vector xo

Repeat for i = 1, 2, 3....

xi = Axi-I

i = Il xi 1l/ l xi-1 II

until converged

The pair (0i, xi) is an approximation to (Rn, Un)

In practice, the algorithm would contain a normalization step, to keep the length of the

vectors xi from becoming too large or too small. This step is omitted from the algorithm to

call attention to an important fact: the sequence of vectors {xi, x2 ..., xi) is identical to

the sequence (Axo, A2xo, ..., Aixo). This latter sequence of vectors is called the Krlov

Seguence associated with the matrix A and the initial vector xo. The subspace spanned by

this sequence of vectors is called the Krylov Subspace, which will be shown to play an

%--
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- important role in the Lanczos Algorithm. The Krylov subspace will be denoted by:

K(A, u, k) = span {Au, A2u, A3u ...... Aku Eqn 2.6

With this convention, it is clear that the Power Method is just a way to generate a Krylov

sequence, and the convergence of the Power Method is equivalent to the convergence of

the Krylov sequence to the dominant eigenvector of the matrix A. What should be noted is

that only the last member of the sequence is used in the Power Method, since all the earlier

terms are merely a means to the end of finding one eigenpair. A logical question to ask

would be whether several (or all) of the terms of the sequence could be used to find

estimates for more than one of A's eigenpairs. In fact, the entire subspace K(A, u, k) can

be used to calculate estimates of exactly k eigenpairs of the matrix A. This fact is the basis

Sfor the Lanczos Algorithm.

The convergence of the Power Method is easy to establish, as long as A has a single

dominant eigenpair (i.e., Xn is a simple eigenvalue), A is non-defective, and xo is not

, orthogonal to the associated dominant eigenvector un. In this case, the vector xo can be

expressed in terms of the eigenvectors of A as:

n n n n , P

x o = ~ u A YD X 1 u A PPX '~ u
0=1Xo iUi _i i Ui AYo= Di i ui = nXPi u '

i = 1--= 1 =-- I n

As p goes to infinity, the ratio (XiiXn)P goes to zero in every case except when i = n, so

that the Krylov Sequence converges to the dominant eigenvector Un.

The Power Method can be applied with a shift a by replacing the matrix A with the shifted

matrix (A - aI). In this case, the algorithm converges to the eigenpair that maximizes the

quantity (Xi - a), as long as this eigenvalue is simple and the starting vector is not

orthogonal to the associated eigenvector. In order to find the minimal eigenpair (the one

associated with the eigenvalue of least modulus), the Power Method can be applied in an

inverse setting by replacing A with its inverse A-I. This is accomplished in practice by

replacing the step "xi = Axi-1" in Algorithm 2.1 by the inverse step "solve Axi = Xi-".

Finally, the algorithm can be applied in an inverse setting with a shift a by solving the

system (A - cl)xi = xi.1 for the iterate xi. In this case, the convergence of the iteration can

4-t
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be established (under the usual conditions given above) to the eigenpair that minimizes the

quantity (Xi - a). This eigenpair is the one whose eigenvalue is closest to the shift point a.

This last case is of great utility in applications involving resonance, since the shift point can

then be interpreted as a frequency component of a time-dependent forcing term. In this

case, the eigenpair found by the Power Method is one likely to be excited by resonance

effects (at least in the linear case, where sub- and super-harmonic resonances are not an

issue).

The Lanczos Algorithm

The Lanczos Algorithm is an iterativc method that can be used to find relatively accurate

estimates of some of the extremal eigenvalues of a symmetric matrix A, along with good

estimates of the associated eigenvectors. It is used in this research as a way to find suitable

approximating subspaces (such as the set of converged eigenvectors from the Lanczos

iteration) for the projection solution of problems involving a large symmetric matrix A.

There are many starting points for a derivation of the Lanczos Algorithm. The discussion

of the last section arrived at the Lanczos Algorithm as a generalization of the Power

Method, where the entire Krylov Subspace is used for the approximation manifold.

Alternatively (Golub, 1985), the Lanczos Algorithm can be derived from considerations of

the optimization of the Rayleigh Quotient, which is defined by:

R(A, x) = (xTAx)/(xTx) Eqn 2.7

The Rayleigh Quotient is a real-valued function of a vector (a functional), which satisfies:

min R(A, x) = Xl and max R(A, x) = Xn Eqn 2.8

where Xi and Xn are the minimal and maximal eigenvalues of A , respectively. (As usual,

it is assumed that A is symmetric.) The min and max are taken over all nx] vectors x.

- This functional can easily be extended to infinite-dimensional linear self-adjoint operators

by replacing the minimum and maximum with the infimum and supremum, respectively.

If x is taken to lie in CS(Q) (i.e., x = Qy) instead of Rn, then the equalities will generally

not be obtained:
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min R(A, Qy) 2! XI and max R(A, Qy) < Xn

An alternative way to express these terms is to note that:

R(A, Qy) = (Qy)TAQy/(Qy)TQy = yTQTAQv/yTy = R(QTAQ, y)

where y is an mxl vector. The Rayleigh Quotient for the vector x = Qy is merely the

Rayleigh Quotient for the reduced matix QTAQ. Henceforth, when discussing the
minimum or maximum of R(A, x), the dependence on the vector x will be suppressed, so

that R(A, x) will be written as R(A).

A natural way to measure the accuracy of QTAQ as an approximation to A is to try to
optimize the Rayleigh Quotient, in the sense that Q is to be chosen to give the least

minimum and the largest maximum. Alternatively, we could consider the situation when

the nxm matrix Qm is known, and it is desired to append a vector qm+1 to it to obtain a new
..

matrix Qm+1 that gives a better projection approximation to A, in the sense that:

" min R(Qm+iTAQm+I) < min R(QmTAQm) Eqn 2.9.a

and max R(Qm+iTAQm+I) > max R(QmTAQm) Eqn 2.9.b

Since R(A, x) is a scalar-valued function of a vector x, a logical way to achieve this type of

progress is to take a "steepest-descent" approach, by choosing the new vector qm+l to have

a component in the direction of the gradient of R(A, x):
4..

* Grad(R(A,x)) = d((xTAx)/(xTx))/dx = 2[Ax - R(A, X)x]/(xTx)

Since 2[Ax - R(A, x)x]/(xTx) is in the span of (x, Ax), we can satisfy Equations 4.3 by

requiring that qm+i contain components in the directions of Aqi. Aq2 ... , Aqm. This

observation leads to the following iteration scheme for the generation of an approximation

QmTAQm to the matrix A:

Pql

...................... . .
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-'; Given an initial vector qo and a symmetric matrix A:

Let q1 = Aqo

Find q2 in span {qi, Aq1l

Find q3 in span {ql, Aql, q2, Aq2} =span (ql, Aql, Aq2) =span {qi, Aqi, A2qi)

........... °

%°°°.........

Find qm in span (ql, Aql, A2q1 ...... Am-Iql = K(A, qo, m)

. The optimization of the Rayleigh Quotient leads to the choice of the Krylov Subspace as the
approximating subspace for a projection solution involving the matrix A. If the columns of

Q form an orthonormal basis for the Krylov Subspace, then the matrix QTAQ is an optimal
(in the sense of the Rayleigh Quotient) approximation to A. Thus, we are led to the task of
finding an orthonormal basis for the Krylov Subspace.

In theory, the standard way to turn a sequence of linearly independent vectors such as

qi, Aqi, A2qi .... Am-lqi into an orthonormal set is to apply the Gram-Schmidt
Orthogonalization procedure. In practice, this procedure is numerically unstable, and the
variations on this scheme (such as "Modified Gram-Schmidt", which reorganizes the
computations somewhat to diminsh the effect of cancellation of significant digits) that will
produce a set of orthogonal vectors are too expensive to implement for large m. (Recall
that we expect m v n, but since n can easily be on the order of hundreds of thousands, m

. can still become "very large".) Some other way of producing orthonormal bases for the
Krylov Subspace must be found. Luckily, for a symmetric matrix A, the vectors in the

Krylov sequence Au, A2u, ..., Anu satisfy a three-term recurrence (see Mish, 1987,

Chapter 4, for details). This means that QTAQ, the projection of A onto the Krylov

Subspace, is a tridiagonal matrix T, so that QTAQ = T or, equivalently, AQ = QT.

To make this last relation more concrete, define the matrix T = tridiag (3i, ai, Pi+i), and

write the three term recurrence by columns, so that:

Iw

-.U . . ': ./. -r -;'' .?... .7 - e¢ i. ...., . . . "i. ...'.;.,' ' %." " '
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al 0320 ------- 0

02 a2 P3 0 I

AQ=QT or A[ql, q2 ... ,qn] = [ql, q2 .... qn] 0 133 a3 N ..... I

1 0 ....... 13n

0 ------ 0 13n cxn

This recurrence can be used as an iteration scheme for constructing the desired orthonormal
basis for the Krylov Subspace. If (for purposes of simplifying the three-term recurrence)

' .... qo is defined as the zero vector, and 51 = 1, then this matrix equality can be written

columnwise as:

Aqj = 13jqj-i + (jqj + pj+lqj+l (J = 1, 2, ..., n-I) Eqn 2.10

This relation can be solved for Oj+lqj+l to get the intermediate result:

,j+lqj+l = Aqj - p3jqj-1 - ajqj (j = 1, 2, ... , n-I) Eqn 2.11

Equations 2.10 and 2.11 are important because they can be used to determine the terms caj

and Pj that define the tridiagonal matrix T, and thus can be used to derive an iteration-p
scheme for generation of new vectors qj+i from the three-term recurrence. If Equation

9.. 2.10 is multiplied on the left by qjT, Equation 2.11 multiplied on the left by qj+ 1T, and the

fact that the qj are orthonormal is taken into account, the remaining terms give these desired
'definitions:

S=tj =qjTAqj Eqn 2.12.a

Dj+1 = qj+iTAqj Eqn 2.12.b

Finally, since the qj are orthogonal, Equation 2.12.a could be rewritten equivalently as:

.j = qjTAqj = qjr(Aqj - Pjqj-I) Eqn 2.13

These relations suggest the following skeletal outline for an algorithm to compute the

vector qj+l from the sequence of vectors qj, q-. qU:

, .
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Given qI, q2 ...... qj (and thus ai and Pi for i = ito j, using Eqns 2.12 & 2.13)

Let rj+l = Aqj - ajqj + pjqj-1

Pj+l = II rj+l II

qj+i = rj+I/Dj+i

aj+l = qj+ITAqj+i = qj+IT(Aqj+i - Pj+lqj)

If Pj+i = 0 at some step of the algorithm, then the iteration must halt or divide by zero. In

this case, the tridiagonal matrix is said to be reduced. The interpretation here is that the
tridiagonal matrix is locally diagonal, and thus can be decomposed ("reduced") into
smaller, independent tridiagonal matrices (one jxj and the other (n-j)x(n-j)). Although this

may seem like an unwelcome event, the following discussion demonstrates that it is

actually very good news.

Recall that the jth column of AQ = QT was given byAqj = Pjqj-i + ajqj + pj+iqj+i. If

we let Qj = [ql, q2, ..., qj], and write Tj in terms of ct and Pi, then

AQj = QjTj + [0, 0 ....... 0, fj+iqj+i] = QjTj + Ej Eqn. 4.10

- where Ej is an nxj matrix whose first j-1 columns are all zero. This type of decomposition

of AQ is the subject of the following theorem, whose proof (under more general

hypotheses) is given in (Golub, 1985).

Theorem 2.3 Let A be an nxn symmetric matrix, Tj be ajxj symmetric tridiagonal

matrix, Qj be an nxj matrix with orthonormal columns, and Ej an nxj matrix that is

defined by AQ - QjTj = Ej. Then the spectrum of Tj approximates that of A, in

the sense that there exist j eigenvalues of A (X1, X2, X3 ...... Xj ) that satisfy:

I f. - ci I (2)1/ 2 I1 Ej 112

where Ti (i - 1, 2, ..., j) are the eigenvalues of Tj, and 11 - 112 is the spectral norm.

S

I1
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In the setting of the Lanczos Algorithm, the matrix Ej has a spectral norm given by:

II II = (p(EjTEj))1/2 = Pj+l

This means that the vanishing of the off-diagonal term Pj+1 is equivalent to the calculation

of j excLestimates for eigenvalues of A. This "fault" of the algorithm in fact signals its

convergence. In practice, none of the off-diagonal terms is ever exactly zero, so the

eigenvalues of A are not calculated exactly, but if Pj+i ever becomes sufficiently small, the

effort to recognize this case and take corrective action is rewarded by a number of nearly

exact estimates of A's extremal eigenvalues.

Algorithm 2.2: First Draft. Lanczos Algorithm

Finds: Estimates of extremal eigenpairs of a symmetric matrix A

Given: Initial nonzero vector ri

(1) Let Pj = II rII and define qo= 0

(2) For j = 1, 2, 3 ...... n -1

qj = rj] j

uj = Aqj

rj+1 = uj - pjqj-i

;, fr' aj = qjTrj+I

Let rj+l = rj+l - ajqj

Pj+1 IIrj+

If (Pj+i = 0) then STOP : the eigenvalues of Tj are exact

estimates of j eigenvalues of A.

If Pj+i = 0, so that the algorithm terminates, and it is discovered that more than j

eigenvalue estimates are needed, the algorithm can be restarted by choosing a new random

initial vector rl that is orthogonal to the columns of Qj. (In practice, exact equality of

-."%

'At
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floating point numbers is seldom obtained, so the actual test might be I Pj~i I < E, where

.1 ~E is some small error tolerance.)

A serious difficulty plagues Algorithm 2.2, namely the loss of orthogonality among the qi.

Modification of the Lanczos Algorithm to repair this defect requires an analysis of the effect
of round-off error on the calculations. This analysis starts with the consideration of the

convergence of the algorithm in the absence of round-off. In the following paragraphs, the

nxj matrices Qj and Ej, as well as the jxj matrix Tj, will have the subscript j suppressed, in

order to avoid confusion.

Recall the relation AQ = QT + E, where E = [0, 0,. 0, Pj+iqj+l] has j columns. Let

the eigenpairs of the jxj tridiagonal matrix T be denoted by (0i, pi). Each of these

eigenpairs (0i, pi) of T defines an approximate eigenpair (0i, vi) of the matrix A, where vi

is given by vi = Qpi. The obvious measure of accuracy of the approximation (9i, vi) is

the error II Avi - ivi II (in the 2-norm), but we would prefer to calculate this error without

the expense of multiplying by A. In this vein, we note that:

II Avi - eivi II = If AQpi - OiQpi I! (since vi = Qpi)

' = II (AQ - QT)pi II (since Oipi = Tpi)

= II Epi II (since AQ -QT = E)

If P = [p], P2 .... pJ] is the matrix of T's eigenvectors, and the ith column of this matrix

is given by the scalars (IC Ii, x2i, .... lji)T, then the error II Avi - 0ivi II can be written as:

II Avi - Oivi II = II Epi II = 11 Pj+iijiqj+t II - 1j+iiji I

since all the qi are of unit length. This last relation gives the desired simple form for the

error II Avi - 0ivi II : it is just the bottom element of the ith eigenvector of the tridiagonal

matrix T, multiplied by the term Oj+l. Note that when f3j+ = 0, the error vanishes, in

agreement with the results of Theorem 2.3.

*..--:"di
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In order to use this last result, it is necessary to diagonalize T at each step of the iteration so

that the bottom elements of the eigenvectors can be found. This will turn out to be a good

idea anyway (from the standpoint of reducing round-off error), but calculating all the

eigenvectors of a tridiagonal matrix at every step just to avoid matrix products (for the
evaulation of the accuracy of A's eigenpairs) seems like an enormous expense. In fact, the

matrix T is only of order j, and j is typically much less than n. In these circumstances,

finding the j eigenvectors of T is many times cheaper than performing multiplications by

the nxn matrix A.
%*,

In practice, after many steps of Algorithm 2.2, it is common to find that, not only are the

vectors qi not orthogonal (i.e, QjTQj * Ij), but that the rank of Qj is less than j. The

vectors qi are supposed to form an orthonormal set, but in practice may turn out to be

linearly dependent. Clearly, something is wrong with the algorithm, and this is the reason
that the Lanczos Method was abandoned in the 1950's. In order to understand the reasons
for this breakdown of the calculations, the effect of round-off error on the algorithm must

be studied. The following discussion is based on that found in (Parlett, 1980b), where the

details can be found.

If vi is an approximate eigenvector of A with associated eigenvalue Oi, then the analysis of

the last section implies that the accuracy of this eigenpair can be measured in terms of the

error norm II Avi - 0ivi II = II Pj+lnji II, where tji is the bottom element of the ith

eigenvector of Tj = QjTAQj. Since vi = Qjpi, vi is in the span of (q1, q2, ... , qj}, so vi

should be orthogonal to the next iterate qj+i, because the qk are supposed to form an

orthonormal set. In practice, however, the inner product qj+lTvi may not be zero. In fact,

if .t is the unit round-off, then this inner product actually satisfies:

I qj+lTviI ! .it AII/ j+ltji I = It AII AI Avi -0ivi II i= 1, 2 , j

.F o "

If (0i, vi) has converged to an eigenpair of A, it is possible for the term I Avi - Oivi II to be

arbitrarily small, and thus qj+i can have an arbitrarily large component in the direction of
any converged eigenvectors of A (see Figure 2.7 for a geometric interpretation). This is

the mechanism by which independence of the iteration vectors qj is lost. This defect must

'A,..
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be remedied in any practical Lanczos procedure. Two schemes immediately leap to mind:

(1) Orthogonalize qj+i against all the other vectors qj, q2, ..., qj, and renormalize.

In Figure 2.7, this amounts to orthogonalizing qj+ against qj and qj- .

(2) Orthogonalize qj+l against all the converged eigenvector estimates vi = Qjpi.

These estimates can be identified in terms of the error II Avi - 0vi 11 = I113j-, :x. II.

In Figure 2.7, this amounts to orthogonalizing qj+i against v.

qj+4 in absence of round-off)

qj+l (in presence of round-off)

converged e* nvector v

Figure 2.7: Interpretation of Loss of Orthogonality in Lanczos Algorithm

Scheme (1) is termed Lanczos with Complete Reorthogonalization. This remedy was
mentioned by Lanczos himself in his original paper (Lanczos, 1950), but it is extremely

expensive, and does not directly treat the cause of the problem, namely the converged
eigenvectors. Scheme (2) is called Lanczos with Selective Reorthogonalization, and it is

expected to be no more expensive than (1), since there cannot be more converged

eigenvector estimates than there are vectors qj. In fact, the expense of finding the bottom

elements of Ts eigenvectors will increase the cost of scheme (2), but for j o n, this cost
will be insignificant.

The important idea to keep in mind is that the price that must be paid for the control of

round-off error in the Lanczos Algorithm is the calculation of the error II Avi - 0ivi1 I2a

each step of the iteration. The bad news is that the eigensystem of the jxj tridiagonal matrix

R M 2
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<K Tj must be found at each step; the good news is that this computation is inexpensive

compared to dealing with A, and that this work amounts to checking for convergence of the

eigenvector estimates. Such a check for convergence of a desired quantity is a good idea in

any iterative scheme. These results allow the following algorithm, which is a robust

implementation of the Lanczos Algorithm.

Algorithm 2.3: Lanczos Algorithm with Selective Orthogonalization

Finds: Estimates of extrenial eigenpairs of a symmetric matrix A

Given: Initial nonzero vector ri, error tolerance e

(1) Let P3j 11 r~iI1 and define qo=0

(2) For j 1,2, 3 ... n-1I

qj =ryj/~

uj Aqj

rj+1 = uj - Oq-

=j qjTrj+ I

*.Let r j+1 = rj+ I czjclj

Let P*j+l11I r~j+l 11

Compute the eigensystem (Oj,pi) of Tj =tridiag(pi, cti, Pi+1)

For i =1, 2,..j

if I j3*j+ilrji I < then orthogonalize r*j+i against Qjpi

Let rj+l r*j+i

Let JPj+i 11I rj+l 11

If Pj+i = 0 or if sufficient eigenpairs have converged then SOP

As before, if fPj+i = 0, the algorithm can be restarted with an initial vector (typically, a

random vector) that is orthogonal to all the qi, i =1, 2,..,.
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There are several nice features of this algorithm:

(1) If A has a multiple eigenvalue, then the selective orthogonalization scheme will

(eventually) generate an orthonormal set of eigenvectors associated with this

eigenvalue. Although the multiplicity itself cannot be guaranteed (there is always

the chance that not all the eigenvectors have been found yet), there are schemes

(called BlockLan.zos that can determine this multiplicity. The handling of

multiple eigenvalues in a robust manner is not a characteristic of very many

eigenvalue solvers -- the ability to handle this case is an advantage of the Lanczos

scheme.

(2) The algorithm cannot generate an unreduced tridiagonal matrix. Testing for the

vanishing of the term pj+l = 0 prevents an unreduced matrix from appearing.

When the QR or QL algorithm is used to diagonalize Tj, this is a very useful

feature, since these algorithms only work on unreduced matrices.

(3) The algorithm involves A only in the sense of a matrix product. This means that A

need not be stored in explicit form, or even that A exist as an nxn matrix! This last

case would include the use of "Inverse Lanczos", in the sense that the Lanczos

Algorithm can be applied to A-1, by replacing all the matrix multiplications y = Ax

by solutions of the equation Ay = x. This case can also include the use of a shift,

where the solution is of the equation (A - aI)y = x. Although it might seem

appropriate to apply the shift in a direct (i.e. non-inverse) setting, by using the

matrix multiplication y = (A - aI)x, it turns out that the Krylov Subspace is

invariant with respect to such a shift, in that K(A, u, j) = K(A - aI, u, j). Thus,

unlike its cousin the Power Method, no advantage is to be gained by shifting the

Lanczos Algorithm, except when the iteration is performed in an inverse setting

(since (A - aI)-l * A-1 - aI).

(4) The Algorithm can be easily generalized (Parlett, 1980b) to handle the solution of the

matrix pencil problem (A - XM)u =0, where M is a positive-definite matrix. While

there are other ways to approach this generalized problem (especially those

9
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involving the Cholesky factorization of M), the Lanczos Algorithm can be extended

in a very natural way that retains the other advantages mentioned here.

This type of approach can also be used on the problem of solving linear sets of equations,

instead of the solution of the matrix eigenproblem. Depending upon the arrangement of the

calculations, either a Lanczos solution procedure or the well-known Conjugate Gradient

Method (CGM) is obtained. This topic will be developed further in the next chapter of this

document.

Finally, it is worthwhile to reconsider the desired qualities for a "good" approximate

solution space CS(Q) that were postulated earlier:

(1) QTAQ has to somehow be a "good" approximation to A

*(2) QTAQ should have some simple structure (i.e. banded, triangular, etc.)

(3) It should be economical to form Q, or to add vectors to Q to increase the rank

(and hence the accuracy) of the projected matrix QTAQ.

We have seen that the Krylov Subspace is capable of satisfying all three of these criteria:

(1) QTAQ is the "best" approximation to A in the sense of the steepest descent

optimization of the Rayleigh Quotient.

(2) QTAQ is tridiagonal, which is the simplest form a symmetric matrix can possess
(except, of course, for a diagonal form, but the diagonalization of an arbitrary

symmetric matrix in a finite number of steps violates basic principles of algebra)

(3) The tridiagonal structure of QTAQ makes it easy to append new vectors to the

solution space using a three-term recurrence.

%. Overall. it appears that the Krylov subspace is a logical setting for the projection solution of

large matrix problems. and that the Lanczos Algorithm is an efficient and robust means to

calculate an orthonormal basis for this subspace.

[ .. ,"
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Chapter 3: Development of the Proposed Algorithm

Introduction

The main purpose of the proposed algorithm is to try to reduce the expense of performing a
finite element analysis of a large mechanical system. Therefore, much of this chapter is
concerned with examining the properties of systems of algebraic equations resulting from

. Finite Element discretizations. The rest of the chapter is motivated by the desire to
construct a reduced coordinate algorithm that will retain the fundamental properties of the
larger system, and to place this algorithm in perspective relative to other related methods.

The Finite Element Method is widely used for the generation of approximate solutions of
problems in Engineering Mechanics. Generally, a continuum problem involving an infinite-
dimensional solution space is reduced to a finite-dimensional matrix problem via a Finite
Element discretization. The power of the Finite Element Method lies in its ability to model
most of the important properties of the underlying physical problem without introducing
severe numerical or implementational difficulties. For instance, if there are material
discontinuities or singular applied loads in the physical problem, they can be incorporated
without difficulty into the Finite Element model. In a Finite-Difference scheme, this sort of
non-regular" data must generally be simplified, smoothed, or ignored. If the underlying

physical problem is governed by a self-adjoint differential relation, the resulting Finite
Element equations are typically symmetric (the matrix equivalent of self-adjointness). This

sort of preservation of symmetry is not typical of Finite-Difference approximations for the
same problem. Finally, when the underlying differential operator is coercive (all of its
eigenvalues are positive), the resulting set of Finite Element equations generally involves
positive-definite matrices (all of whose eigenvalues are positive). Thus the Finite Element
discretization preserves most of the most important physical and mathematical properties of
the original physical problem.

Unfortunately, there are a few undesirable characteristics of large physical systems that are
preserved in the Finite Element model. The first of these is the sheer size of the problem.
Many important physical problems yield Finite Element equation sets that are simply too
large to deal with effectively on the computer. A good example of this case is any large

- . three-dimensional problem. Another problem is that the spectrum of the continuum

- ....
.-. .... . . . . . . .
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differential problem contains a wide range of frequencies (these frequencies are often

unbounded above). The Finite Element model typically preserves this property in that the
frequencies of the discretized problem span many orders of magnitude, so that the matrix
problem to be solved may be ill-conditioned. In both of these cases, there is a need for

.. some sort of reduction scheme to take large Finite Element models and simplify them so

that:

(1) the important engineering behavior of the solution can be found more inexpensively

(2) the resulting reduced set of equations will be better conditioned, and hence more

amenable to a numerical solution.

The development of this chapter is oriented towards the construction of an algorithm to

satisfy these two needs, while still retaining the simplicity of implementation that
4characterizes most Finite Element models. The chapter begins with a general discussion of

the Finite Element Method, oriented towards the characteristics of typical Finite Element

equations for time-dependent problems. The particular models discussed are dynamic
problems, but the methods involved in the construction of the algorithm can be easily used

to solve equations whose time-dependence involves diffusive behavior (or even for steady-

state problems).

Once the Finite Element discretization has been performed on the spatial terms of a time-
dependent problem, the resulting system of temporal differential equations must be solved
numerically. This solution process is discussed in the context of one of the most widely-

used numerical intergration schemes for dynamic problems, the algorithm known as
Newmark's Method. The behavior of the Newmark scheme, as well as the basic principles

of time-stepping methods in general, are developed in the next section of this chapter.

The proposed reduced-coordinate algorithm is then developed from the standpoint of a

combination of the Lanczos Algorithm and Newmark's Method. Individual components of
this proposed algorithm are discussed and suggestions for implementation made. Although
the algorithm is cast in terms of Lanczos Vectors and Newmark's Method, the discussion

of the proposed algorithm is general enough to permit other projection bases and temporal
integration schemes (some of which are mentioned in the last chapter, in connection with

suggestions for future research).

Finally, the proposed algorithm is compared and contrasted with other related works from

.-
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the recent literature of Computational Mechanics. Since the topic of Projection Methods has

a rich and diverse history, only some of the most recent (and most closely related) methods

are reviewed in this section.

Note that in this chapter, time is represented by the letter "t", which is traditional for

problems of this form. This convention violates those laid out at the end of Chapter 1,

since time is a scalar quantity, and scalars are normally written as lower-case Greek letters.

Finite Element Equations

The Finite Element Method is a computational scheme that is commonly used for the

numerical solution of the boundary-value problems of mathematical physics. In simplest

terms, it is a computationally efficient procedure to interpolate the approximate solution to a

physical problem. It is one of the most widely used modelling techniques in engineering,

and there are many problems where it is the only rational model that can be used for the

generation of numeric solutions. At the heart of the method are two very important

concepts:

(1) the construction of a manifold of approximate solutions using locally nonzero

interpolation functions.

* (2) the application of a Galerkin projection scheme to solve for the optimal member

of the solution manifold.

4' The standard approach to generate a Finite Element Model is to divide the physical body

into subregions (elements), incorporating interpolation node along element boundaries and

within element interiors. Interpolation functions corresponding to each nodal unknown

(typically, these unknowns are the nodal displacement components, grouped into a vector)

are constructed so that a given interpolation function is equal to unity at its associated node,

and equal to zero at every other node. The interpolation functions have narrow support, in

that they are nonzero only over elements containing, or contiguous to, the associated node.

This narrow support property means that the product of two basis functions is nonzero only

when they are both associated with the same element. Therefore, the inner product of two

basis functions is "usually" zero, and can be nonzero only when both basis functions are

associated with the same element (this condition is referred to as "near-orthogonalitv.
.'V
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These interpolation functions form the basis of the approximate solution manifold, and thus

serve to define an interpolant for the approximate solution that is globally defined, but

depends only on the values of the solution at the nodes (which are of course finite in

number).

The Galerkin projection scheme is motivated by the underlying weak physical formulation

of the differential problem, e.g., the principle of virtual work. Typically, this weak

formulation involves an integral over the physical body, which defines an appropriate inner

product function for a Hilbert Space of physical solutions. Seeking the approximate

solution in the finite-dimensional manifold amounts to projecting the problem onto the

Finite Element basis, which yields a set of algebraic equations in the nodal unknowns. For

instance, the integral equations that govern the problem of the dynamic behavior of a

deformable continuum give rise to the set of algebraic equations shown in Eqn 3.1:

dT{Mii+Ku - f} = 0 Eqn 3.1

where u is the vector of nodal displacement components,

i is the vector of nodai acceleration components (often denoted by "a")

f is the vector of applied nodal forces due to external loads

*- K is the "stiffness" matrix that relates nodal displacement to elastic forces

M is the "mass" matrix that relates nodal accelerations to inertial forces

d is an arbitrary vector of virtual displacements (i.e. a "test" function)

Since we are considering Galerkin schemes, the "test" functions must also lie in the

approximate solution manifold, so d has the interpretation of an arbitrary nodal

displacement vector. In general, Eqn 3.1 could also include a term Cv, where v is a vector

of nodal velocities and C a "damping" matrix. For completeness, this term will be

considered in the temporal integration schemes of the next section, but because the product

Cv is typically small compared to the other terms in the Eqn 3.1, it will not be included in

the following analysis.

For a three-dimensional problem, each nodal displacement consists of three independent

displacement components, so if there are N nodes, there will be a total of n = 3N algebraic

equations. Since every component of the virtual displacement d is arbitrary, this results in

a total of n equations in the n nodal displacement unknowns:

............................... ............. . . . .. . . . .
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Mi + Ku = f Eqn 3.2

It should be noted that K and M will be sparse, because of the near-orthogonality of the

basis functions and their derivatives. For any reasonable ordering of the nodes, K and M

turn out to be baded, which leads to great savings in computational effort compared to a

basis that has global support. In addition, the matrices K and M turn out to be symmetric

and positive-definite, corresponding to the self-adjoint and positive character of the

underlying integral operators. These properties of the matrices are useful both

computationally and theoretically. They make the equation set relatively well-conditioned,

guarantee that the point spectrum of both K and M is real, and express the fact that the

-underlying nature of the continuous integral problem has been inherited by the finite-

*dimensional discretized form. (In general, none of these characteristics are found in a

matrix problem arising from a finite-difference approximation.)

There are two ways to approach the solution of a matrix ordinary differential equation such

as Eqn 3.2. The first is to realize that if the mass matrix M is positive definite, then it can

be used to define a weighted inner product, which leads to the study of the matrix encil

--.v (K,M). The analytic solution of Eqn 3.2 is then phrased in terms of the (generalized)

eigenvalues and eigenvectors of this pencil, and the Lanczos Algorithm is brought into the

picture in the generalized sense metioned at the end of Chapter 2. The other approach is to

reduce Eqn 3.2 into a matrix problem whose natural inner product is the "usual" n-

dimensional space Rn. This approach is a little easier to deal with, since the development

of the Lanczos Algorithm in the last chapter was presented in this setting, so the following

*"... derivations follow from this standpoint.

-If the mass matrix M is positive-definite, then it can be decomposed via the Cholesky
Factorization into the product of a lower triangular matrix L and its transpose:

M = LLT

In this case, Eqn 3.2 can be multiplied on the left by L-1 to obtain the equivalent relation:

y + Ay = b Eqn 3.3

-1"
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where = 2/at2)y

y = LTu

A =L-1KL-T

b = L-If (note that b is a function of time)

Since L is nonsingular whenever M is, the transformations implicit in Eqn 3.3 are

invertible, so the coordinates y are derived from the displacement coordinates u by a simple

(though nonorthogonal) change of basis. If M is not positive definite, but K is, then the

roles of these two matrices can be reversed. If neither M nor K is positive definite, then

there is no general theory for the material presented below, since the matrix ODE of Eqn

3.2 cannot be guaranteed to be diagonalizable.

The solution of Eqn 3.3 proceeds by noting that, since A is symmetric (because K is

symmetric), the matrix A can be reduced to diagonal form by an orthogonal change of

basis:

PTAP = D = diag(cwi2 )

where the columns of P are the eigenvectors of A (taken to form an orthonormal set), and

the diagonal matrix D consists of A's eigenvalues Gi2 (since A is assumed to be positive

definite, these eigenvalues are written as squared quantities). The quantities " have the

physical interpretation of the natural frequencies of the modes of vibration represented by

the eigenvectors of A, or more precisely, by the columns of Z = L-TP (since there is a

change of basis involved to obtain Eqn 3.3). Note that the matrix Z is an orthogonal matrix

in the inner product weighted by the mass M, since:

ZTMZ = (PTL-1)M (L-TP) = PT (L-1 LLT L-T)P = pTp = I

It is important to realize that there are two Hilbert spaces imposed on this problem. The

first is the Hilbert Space Rn, with the inner product <u,v> = uTv, and the second is the

Hilbert Space characterized by the mass-weighted inner product <u,v>M = uTMv. Recall

that the notions of length, orthogonality, convergence, and accuracy are all phrased in terms

'S of the associated inner product, so the "schizophrenia" of these two topological settings

!%
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should be kept in mind at all times. What is also important (and comforting) to remember is

that the time scales of the problem are dictated by the frequencies wi, which are the same for

both problems.

Although the computational schemes presented in this work do not attempt to diagonalize

exactly the matrix problem defined by Eqn 3.2, it is instructive to consider the behavior of

this diagonal problem for the linear case, since it leads to some insights that should be

considered in the proposed algorithm and its relatives. Therefore, an overview of the

theory for the analytic solution in this case will be presented in the following paragraphs.

The change of basis induced by the matrix P on the problem of Eqn 3.3 diagonalizes the

matrix system of ODE into a set of scalar ODE:

.2trjat2 + o 2 Vi = 0(t) pi Eqn 3.4

where ui is the contribution of the ith eigenvector to the solution (if z = (41, 4f2, ..., 4fn)T,

then the vector y is given by y = Pz), and the term 0(t) pi is equal to piTb, where pi is the

ith column of P. The time-dependence of this modal loading term is included in the first

factor for emphasis that the load b can be a function of time. The solution to Eqn 3.4 will

be a sum of a homogenous solution (trigonometric functions with frequency "), and a

particular solution that depends upon the right-hand side. In particular:

(1) If pi has a large component in the direction of the spatial distribution of b, then the

ith mode is said to participate in the solution, and this mode may have the potential

to contribute significantly to the solution of Eqn 3.2.

(2) If 0(t) contains a large frequency component that is close to o)i, then the ith mode

may also be expected to contribute significantly to the solution of Eqn 3.2, through

the phenomenon of resonance.

In either case, the overall behavior of the solution of Eqn 3.2 may be largely influenced by

"' a particular modal contribution due to a spatial or temporal matching of the loading terms to

.4-"
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the natural vibrational modes of the structure. Any reduced coordinate model that will be
expected to capture the important mechanical behavior of the larger problem must

incorporate some means of including these effects.

S.:. It should be mentioned that the lower frequencies of the discretized problem given by Eqn
3.2 tend to be much more accurate estimates of the actual frequencies of the underlying
continuous problem than the higher ones. As an example, many continuous problems have
a point spectrum that is unbounded, yet there is no way that a finite-dimensional operator

can exhibit this sort of behavior. It will be seen in the next section that these higher
frequencies can cause serious difficulties for the unreduced problem. This is not such a

surprising result, since the spread of these time scales is obviously related to the condition

of the problem.

Finally, we note that the diagonalization used to examine the matrix problem is not strictly

applicable in a nonlinear setting, since then the matrices, the associated frequencies, and the
modes defined by the columns of P (or Z) all evolve with time. (In fact, it may be
somewhat of a misnomer to refer to the eigenvalues in terms of frequencies, since the

interpretation of a frequency as representative of a characteristic period for a mode to return
- to its initial state may not be appropriate in a nonlinear problem). Nonetheless, the

5. qualitative ideas presented are still important in a nonlinear problem (especially those that
pertain to contributions due to spatial and temporal matching of load to response), and we

shall see in the next section that the practical solution of the time-dependence of the solution
depends upon a iteration scheme that involves the solution of a linear system of equations at

each step.

Temp ral Integration Schemes

The equations of motion form an n-dimensional set, but there are 3n unknowns at each time
(displacements, velocities and accelerations). Some method of reducing the size of this
problem must be employed in order to achieve a unique solution at the end of the time step.
Newmark's Method (Newmark, 1959) postulates simple polynomial relations among these

coordinates:

Vn+l Vn + (I - y)anh + 'an+ih Eqn 3.5.a

Un+= un + Vnh + (1/2 - P)anh2 + P3an+ih 2  Eqn 3.5.b

2 .... j..'.A *.'r*v.
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where the length of the time step is given by h = tn+l - tn (note that h is a scalar), and a

subscript "n" represents the value of the corresponding quantity at time tn (i.e., Un = U(tn)).

These equations can be taken as a simple expression of polynomial relations among the

displacement u, velocity v, and acceleration a, or they can be derived by a weak formulation
of the temporal problem, with the "test" functions in the form of a two-parameter family

involving -y and 13. The details of this latter approach can be found in (Zienk-dewicz, 1977,

Chapter 21), along with the generalization to families of numerical integration schemes that
involve three or more parameters.

This type of polynomial approximation has been used very successfully in a wide variety of
4" problems in structural dynamics. Newmark's original derivation for the two-parameter

numerical integration scheme based on these relations used the accelerations as the solution

of the equations of motion at time tn+l. The velocities and displacements can then be

**obtained by substitution of the quantity an+1 into Eqn 3.5. Alternatively, the relations of

-''. Eqn 3.5 can be recast so that the displacements at time tn+l are the primary unknowns,
and the velocities and accelerations become derived quantities. Some of the details of the

development of these schemes will be presented later in this section.

In any numerical method, the primary issue that must be addressed is that of convergence.
A convergent method is one that guarantees that a refinement of the discretization will
produce generally more accurate results. In a time-stepping scheme, as the size of the time

step decreases, the answers converge to the correct solution. A second criterion is that of
accuracy, which is related to that of convergence. Where convergence addresses the

question "does the error go to zero as the time step decreases?", accuracy is concerned with
"at any particular time step, how accurate is the solution?", or perhaps "at what r=does

the error go to zero with step size?". Obviously, a convergent method in which the error

goes to zero as the square of the step size (a Quadratic convergence rate) will eventually

become more accurate than another scheme in which the error and step size decrease at the

same rate (a = convergence rate).

...% -' " " " " "'. - . . '. -. " ." " " ." " ."'.-""- "" ,'. "- .""' "- "" ."". "" ." -"". "" -"".""- " " .""."", "" ."". ",""¥ " "" .",.""." ." .""N
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Another concern is that of stability - a stable method is one that guarantees that errors
introduced at one step cannot grow with successive steps. If a method is unstable, even

when the errors at each step are small, they can increase exponentially with time, thus

overwhelming the solution. In a stable method this cannot occur, although stability alone
does not tell us anything about the size of solution errors that may be introduced at each
step, or whether errors from different times can grow by accumulation. Many numerical
methods are only conditionally stable, in that stability is guaranteed only when the step size
is smaller than some threshold time scale dictated by the data of the problem and the
discretization (typically, this time scale is a factor of the shortest period of vibration for the
structure). Some idea of this critical time scale must be known a priori for a conditionally
stable method to behave in a robust manner. For this reason, the use of unconditionally

.sb methods is often preferred - these methods are stable regardless of the step size
(although the actual size of the errors introduced at each step may still be large). Finally, it
should be noted that there are many related definitions of stability, and a precise definition
is a matter of opinion in the nonlinear case. The reader is referred to (Hughes, 1983) for an
exhaustive and yet very readable view of this topic. (Much of the detail underlying this
section can be found in this reference.)

The convergence and stability characteristics of a numerical method are not independent
(they are related by the Lax Equivalence Theorem, which is often termed "The Fundamental
Theorem of Numerical Analysis"), and so it is no surprise that we would want to restrict
ourselves first to methods that are both convergent and at least conditionally stable. In
addition, it should be clear that an unconditionally stable method, especially if it has a
higher order convergence rate, is to be desired. In the context of Newmark's Method, it
can be shown (Hughes, 1983) that the algorithm derived from the relations of Eqn. 3.5

-will be:

(1) unconditionally stable when 2[3 _y 1/2
(2) linearly convergent when y 1/2

(2) quadratically convergent when y = 1/2

An obvious (and widely used) choice for these parameters is [3 = 1/4 and y = 1/2. In this

case, the time-stepping strategy has the particularly simple interpretation of applying the
trapezoidal rule to the integration of a = dv/dt, v = dx/dt:

Lq.
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rn+
V(tn+1) = V(tn) + J a(t+t) dt Eqn 3.6.a*- itn l

tn

V(tn) + (h/2)[a(tn+l) + a(tn)]

• • ftn+ 1

u(tn+l) = u(tn) + J v(t+,t) dt Eqn 3.6.b
tn

= U(tn) + (h/2)[v(tn+l) + V(tn)]

= U(tn) + hv(tn) + (h2/4)[a(tn+l) + a(tn)]

This choice is often termed the trapezoidal method, or alternatively, the average-acceleration

method.

Newmark proposed a simple but effective iteration scheme for nonlinear problems. The

equations of motion are solved for the acceleration at the end of the time step (recall Eqn

3.2, evaluated at time tn+l), and then this new acceleration estimate can be used to find

improved values of velocities and displacements.

(i+l)an+1 = M-l(fn+i - K (i)un+l - C (i)vn+l) Eqn 3.7

where the superscript in parentheses preceding a quantity refers to the iteration number.

Note that the effects of damping have been reincorporated into these equations.

To examine the convergence of this iteration for a particular time step, the iteration can be

written in the form:

(i+l)an+l = F ( (i)an+l) + b Eqn 3.8

Where the vector b contains all the terms that do not depend on the latest estimate of the

acceleration. The convergence of this iteration is related to the existence of attractive fixed

points for the transformation F. The particular form of the transformation matrix F can be
e evaluated by substitution of the governing relations among displacement, velocity, and

acceleration (given by Eqn 3.5) into the iteration defined by Eqn 3.7:

J,-
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(i~1)an+1 = M-1 (p - K (i)un+1 - C (i)vn+1)

= M-1 (p -K {Un + Vn h + (1/2 -3)anh2) -C {vn +(1 - y)anh)

- 3h2K (i)an+l - hC (i)an+l)

= - hM-1(P3hK + yC) (i)an+1 + (terms independent of an+l)

= F(i)an+i + b

In this case the transformation operator F is the matrix defined by:

F= hM-I(P3hK + 1 ) Eqn 3.9

A sufficient condition for the convergence of this iteration is that the solution an+l behave

as a fixed point of the transformation F:

an+1 = F an, + b Eqn 3.10

In the linear case Eqn 3.10 can be subtracted from Eqn 3.8 to obtain estimates of the error

(i)en+i at the ith iteration:

(i+l)en~ = (i+l)an.1 - an+l

= F (i)an+l + b - (Fan+l + b)

= F ((i)an+l - an+1)

= (i)en+l

(i+l)enl F (i)en+l Eqn 3.11

- Eqn 3.11 implies that the convergence of the Newmark iteration defined by Eqn 3.7 is

guaranteed whenever the spectral radius of the transformation F is less than unity. The

following development shows that this will occur in the undamped case when the time step

is smaller than a multiple of the smallest characteristic period of the pencil (K, M). This

characteristic period is given by:

F,
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Tj = 27c/tj

where the scalar 0j 2 is the largest eigenvalue of the pencil (K, M). This result is obtained

by using the fact that the eigenvalues of M-1K are the same as those of the symmetric matrix

A = L-1KL-T, where M has the Cholesky factorization M = LLT. In this case, we find that:

p(F) = p(1h2M-lK)

= I 3h2 1 p(M-IK)

= I P I h2 G j2

= I P 1 (27) 2 (h/'j)2  < 1 for convergence

Therefore, a sufficient condition for the Newmark iteration to converge is that the step size

h should be taken smaller than the smallest period multiplied by the factor 1/(2nr P1/2).

This result is not good news: the point of the trapezoidal version of the Newmark Method
is that it gives an unconditionally stable algorithm, so that the length of a time step is not

dictated by stabilijy conditions that restrict the step size to scales on the order of the shortest
vibrational period of the structure. Un_" rtunately, the convergence of the iteration used to

find the desired accelerations gives exactly these same conditions that we are trying to avoid

by using an unconditionally stable method. There is hope that these conditions, though

sufficient, are not necessary, so that they may overly conservative in helping us choose a

step size. For a linear system, the calculations could conceivably be reordered so that no
iteration is necessary, but this sort of detail will not help in the nonlinear case, since

iteration will be required whenever the mass, stiffness. or load depend upon the solution.

At this point it is instructive to recall that the highest frequencies of vibration for the

structure (which cause stability and convergence concerns) are usually not very accurate

estimates of the associated modes and frequencies of the actual physical system being
modelled. Some thought might be given to the idea of "filtering out" these high-frequency

effects, both because they cause stability or convergence trouble and also because they arise
from inaccuracies introduced by the discretization. One way to perform this filtering would
be to incorporate artificial damping into the damping matrix C. Unfortunately, this has the

effect of filtering out the modes corresponding to the midrange of frequencies, and leaving

.%
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the higher modes intact (see Hughes, 1983). Another way to perform this filtering is to

vary the parameters 5 and y in order to introduce some artificial dissipation of energy in the
higher modes. Again, this approach causes some difficulties, including the concern that the

high rate of convergence may be lost when y # 1/2. Still another method is to abandon the
Newmark algorithm altogether, and use another method, even at the expense of more
implementation difficulties (recall that there are families of methods with more available

parameters than the two given by the Newmark family).

There is another approach which should be mentioned. If the problem defined by Eqn 3.2
is projected onto a subspace associated with the lower modes of vibration (or some
approximation of this subspace), the resulting projected problem does not contain the high-
frequency behavior of the full (unreduced) equation that is causing these difficulties. Care
will have to be taken not to lose any information that may be particularly important in such a

4 case (e.g., resonance effects for midrange frequencies), but the general idea of filtering
high frequencies via some sort of a projection scheme appears to have promise.

An alternative formulation of the Newmark scheme can be derived that uses displacements
at the end of the time step as the primary unknowns, instead of accelerations.
Consideration of this form of the algorithm begins by rewriting the relations of Eqn 3.5 so

-* that velocity and acceleration at the end of the time step are expressed in terms of the
increment of displacement:

vn+1 = (y/Ph)(un+l - Un) + (1 - y/P)vn + (1 - y/2p)anh Eqn 3.12.a

an+1 = (1/]3h 2)(Un+l - un) - (1/ph)vn + (1 - 1/2 p3)an Eqn 3.12.b

Now the equilibrium equations at the end of the time step (t = tn+l) can be written entirely
in terms of the displacement vector at this time:

Keff un+1 = feff Eqn 3.13

where Keff = K + (y/ph) C + (1/h2) M

feff = fn+i + C [(y/3h)un - (1 - Y/)vn - (1 - y/2p3)anh]

+ M [(1/3h 2)un + (l/ph)vn - (1-1/2p)an

%j I
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After Eqn 3.13 is solved for On+1, the relations of Eqn 3.12 can be used to find estimates

for the velocity vn+l and acceleration an+1. In general, these state variables (u, v, and a)
will not satisfy the equilibrium equations at the end of the time step, and so some form of
iteration can be constructed. In particular, this form of Newmark's method admits a

Newton-like iteration scheme, whenever a "tangent stiffness" Kt can be evaluated. In the

following derivation, it will be assumed that the nonlinearities of the problem are expressed
so that only K and f depend on the displacement u. This implies that the mass and damping

matrices are not functions of the state variables, and that K and f do not depend on
velocities or acceleration (this situation includes both the consideration of small-deformation

plasticity and simple nonlinear boundary conditions). Relaxation of these conditions is not
difficult, but the nomenclature gets a little more complicated, so the general case will not be

treated here.

Define a residual vector r(u) by the relation:

r(u) = K(u)u + Cv + Ma - f(u) Eqn 3.14

When consideration is made for the fact that v and a can be expressed as simple functions

of displacement u (recall Eqn 3.12), then Eqn 3.14 is seen to be a nonlinear set of n

equations in the n displacement components. The derivative of r with respect to u is given

by:

r'(u) = {(aK/au)u + K) + C(0v/au) + M(aa/u) - af/i0u

or r'(u) = {(aK/au)u + K) + (y/3h)C + (1/P3h 2)M - af/au Eqn 3.15

where the derivatives of velocity and acceleration with respect to displacement have been

obtained from the defining relations of Eqn 3.12. The term in braces is the tangent stiffness
matrix, which may either be exact (assuming the third-rank tensor aKIau can be evaluated)

or approximate, as is often the case in plasticity problems.

Since Eqn 3.14 defines a set of nonlinear equations, and Eqn 3.15 shows how to evaluate
the gradient of these equations, these two relations can be combined into an algorithm for

using Newton's method to solve the nonlinear equilibrium equations at the end of the time

step:

.................
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Solve r'((i-l)u) [(i)u - (i-1)uI = - r((i-1)u) for i = 1, 2, ... until converged

(The subscript "n+l" has been suppressed for clarity.)

As usual with Newton schemes, some starting vector must be obtained - for this purpose,

a rough estimate of the displacement (O)un+1 (such as the displacement at the end of the last

time step) is used in conjunction with Eqn 3.13 to obtain a prediction for (1 )Un+1. This

prediction is supplemented by the correction obtained by using Newton's method to find

(i)un+1 for iterations i = 2, 3, ... until convergence is obtained.

4Finds: displacement, velocity, and acceleration at time tn+l

Given: an initial estimate of the displacement (O)un+l

- (1) Initialization: evaluate K, f, C, and M using the estimate (O)un+l

calculate (O)vn+l and (o)an+l using Eqn 3.12

(2) Predictor: use Eqn 3.13 to obtain the estimate (1)un+i

use Eqn 3.12 to obtain (1)vn+i and (1)an+1

(3) Corrector: For i = 2, 3 ...... until converged:

solve r'((i-l)un+l) [(i)un+l - (i-1)un+1] = - r((i-l)un+l)

calculate (i)vn+l and (i)an+l using Eqn 3.12

The convergence of this iteration scheme can be examined using the same sort of fixed-

point analysis that was derived for the original Newmark scheme earlier in this section.

The iteration amounts to the transformation of (i)un+l by a tranformation matrix F, whose

spectral radius must be less than one for the iteration to have an attractive fixed point. In

the following analysis, in order to call attention to the important result, it is assumed that
there is no damping and that the load f is independent of the displacement u (this allows the

"0
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iteration to be phrased in terms of the natural frequencies of the discretized structure).

Finally, it is assumed that the time step h is sufficiently small so that (1/3h2)M dominates

the stiffness K in the effective stiffness matrix - this assumption admits an asymptotic

*"-. approximation for the inverse of r'(u).

Begin the analysis by writing the iteration in the usual transformation form:

(i)un+ = F ((i)un+1) + b Eqn 3.16

Where the vector b contains all the terms that do not depend on the latest estimate of the

displacement. Substitution of the governing relations among displacement, velocity, and

acceleration (given by Eqn 3.12) into the iteration defined by Eqn 3.16 yields:

•1 (i+l)un+l = (i)un+l - [r'((i)un+1)]- 1 [r((i)un+l)I

= (i)un+l - [Kt + (1/h2)M]-I [{K + (l/Ph2)M}(i)un+i - f]

= (i)un+l - [(Ph 2)M-1 + (Ph2)2M- 2Kt + ...I [{K+ (1/ph 2)M} (i)un+I - f]

= (i)un+l - [(Ph 2)M-1 (1/h2)M] (i)un+l + [(ph2)M-1K] (i)un+l +

= (i)un+l - (i)un+l + [(Ph 2)M-IK] (i)un±l +

= [(p3h2)M-lKI (i)Un+l + .... Eqn 3.17

The ellipsis (...) indicates higher-order terms in ()un+, as well as terms that are

independent of this displacement vector.

Eqn 3.17 is a similar result to that derived earlier for the original Newmark iteration. As
V before, a sufficient condition for the error to tend to zero as the iteration continues is that the

time step h satisfy the implicit condition:

1 11 (27c) 2 (h1Tj) 2  < I for convergence

This convergence condition for the Newmark-Newton iteration defined by Algorithm 3.1 to

converge is that the step size h should be taken smaller than the smallest period multiplied

- *
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by the factor 1/(27n 01/2). As we saw earlier, this is the same step-size limitation that is

being avoided by the use of unconditionally stable schemes (such as this one). Thus,

• although the sophistication of Newton's Method is being employed for the iteration

scheme, the sufficient condition for the convergence of this iteration still involves the
7 highest frequencies of the structure. Clearly, the idea of a projection as a filter to remove

these troublesome high frequencies is worthy of closer attention.

Finally, anyone who has ever used a temporal integration scheme knows that the

subdivision of the time step usually gives better results, both in terms of accuracy (since the
error in replacing temporal derivatives with differencing schemes gets smaller with the time

step), and in terms of conditioning (with the numerical behavior of the matrix equation used

to integrate the solution improving as the time step is shortened). There is thus a good

reason for any temporal integration scheme to use a sub-incrementing procedure whenever

convergence to the correct solution at the end of the time step cannot be obtained. It is

worthwhile to examine this fact from the standpoint of the convergence of the Newmark-

Newton iteration given in Algorithm 3.1. In order to simplify the analysis, the matrix

pencil (K, M) used in Eqn 3.13 will be replaced by the equivalent problem (A, I), so that

the underlying matrix relation to be solved at each step is:

Aeff u = feff Eqn 3.18

where Aeff is the effective stiffness obtained by replacing M with I and setting C to zero in

the defining relations for Eqn 3.13. Then the matrix problem to be solved at each step takes
the form:

(A - XDu = feff with X = -(1/ph 2)

This form allows the use of the Fredholm Alternative to examine the condition of Aeff.

Since A's eigenvalues (the frequencies 0)i2) are all positive, the parameter X cannot be an

eigenvalue of A. Application of the Fredholm Alternative Theorem implies that the solution

of Eqn 3.18 will have components in the direction of the ith eigenvector of A whose

magnitude varies inversely with (i 2 + 1/Ph2). Thus, the condition of Aeff looks like:

p(Aeff) = (o2 + 1/Ph 2 )/((o12 + l/Ph2)

6
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This can be compared to the static case (M = 0), where the condition of A is given by:

P(A) = 0n2/0i2

Obviously, as h decreases, the condition of the matrix problem for the solution at the end

of the time step improves (the condition number goes to unity). This results confirms the

well-known qualitative principle that a dynamic problem involving a nonlinear stiffness

matrix K will be "better-behaved" than a nonlinear static problem involving the same

matrix. This also gives a good reason to consider sub-stepping in the time domain

whenever the nonlinear iteration for the solution at the end of the time step will not

converge.

'J

The Reduced Coordinate Algorithm

The basic principles of the proposed reduced coordinate algorithm have been developed in

various sections of this document, and they now can be assembled here. The most

important components of the method are:

(1) Generation of an appropriate manifold for the projection solution of the set of Finite

Element equations using the Krylov Subspace given by the Lanczos Algorithm in an

inverse setting. The initial vector for the Lanczos Algorithm may include the spatial
variation of the forcing function. If resonance is expected, a shift may be used to

Vgenerate Lanczos vectors that are the most likely to be excited by the time-dependent

forcing function. Either the Lanczos vectors themselves (spanning the Krylov

Subspace) or a number of converged eigenvectors from the Lanczos Algorithm may

be used. The former case will give basis vectors that will be termed "Lanczos

vectors" and the latter will yield "Lanczos eigenvectors".

(2) Use of an appropriate temporal integration scheme for the integration of the reduced

equations of motion. "Appropriate" in this sense means that the primary unknowns

A..r of the time-stepping scheme (which will be forced to lie in the approximation
subspace) may need to be chosen so as to match the physical interpretation of the

#vectors used to construct the approximation manifold. If the solution exhibits

enough differentiability, the notion of "appropriate" in this sense may be relaxed

somewhat.

- A-
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(3) Incorporation of a "sub-stepping" scheme into the temporal integration scheme to

enhance the robustness of the algorithm. If this sub-stepping does not yield the

desired convergence of the equilibrium equations at the end of the time step, then

the algorithm should either halt, or attempt to generate a new approximation

manifold using the last accepted values of the state variables u, v, and a.

The purpose of this section is to use these principles to construct a relatively coherent form

of the proposed algorithm.

The matrix equation to be solved is the dynamic equilibrium relation of Eqn 3.2:

MU + Ku = f

where K and f can be functions of the displacement vector u. In general, this relation could

include a damping matrix C and dependence of all the terms on the displacement and its

derivatives. (These extensions are easily made, but because they are not required at the

present stage of the research, they will not be considered here.) This equation can be

projected onto an approximating subspace spanned by the orthonormal (with respect to the

mass-weighted inner product) columns of Q to obtain the reduced set:

+ Ry = g Eqn 3.18

This matrix equation can now be integrated over time to give the desired solution u = Qy. It

should be emphasized that this temporal integration is equivalent to the solution of the

'nonlinear equilibrium equations at the time step t = tn, using the solution at the last time step

as initial conditions. Since these equations are generally nonlinear, some type of iteration

scheme will be used, such as the original Newmark Method, or the Newton scheme of

Algorithm 3.1. If the iteration converges, then the next time step is considered. If the

iteration for the solution at time tn does not converge, there are a few actions that can be

taken:

(1) Subdivide the time step to get a more well-conditioned problem. This gives a

temporal integration scheme with sub-stepping, and as long as the time step is

broken into some integral number of substeps, the solution will eventually be

obtained at time tn (assuming that the iteration converges for each subincrement).
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(2) Recalulate a new projection basis. If the effect of the nonlinearities is to alter the

matching in space or time between the forcing terms and the approximation
manifold, a new manifold will have to be constructed. An example of this would

occur when some elements of the Finite Element mesh undergo large plastic

deformations, so that the original approximation space is no longer a good estimate

of the shape of the deformed structure. In this case, care must be taken to make the

," solution continuous as the manifold is modified, so that the "jump" from one

solution manifold to another does not introduce a discontinuous solution in time.

One way to achieve this continuity is to consider the projection solution of the

problem

M(i - io) + K(u - uo) = f

where Uo is the last approximate solution calculated before the manifold was

recalculated. If this approach is used to define a new incremental displacement

vector z = u - uo, then the projection solution z(t) will be a continuous function of

time.

(3) If neither of these schemes gives a convergent iteration for the solution, then the

algorithm will have to be halted. This is always a consideration that must be dealt
with in a nonlinear solution method, and alternatives to "giving up" when choices

(1) and (2) do not give satisfactory results are being considered by the authors.
J.-'

-.- Implicit in the preceding discussion is the choice of the approximation subspace -

depending upon this choice, one of many related algorithms can be constructed. The

approach used in this research is to generate the approximation manifold using the Lanczos

*- . Algorithm in an inverse setting. This inverse approach is motivated by the spectral
representations for the solution given by the Fredholm Alternative, which showed that the
minimal end of the spectrum is the most important for approximation purposes.

Unfortunately, the generation of Lanczos vectors in an inverse setting involves solving the
large system of equations that we are trying to avoid by using a reduced coordinate scheme.

Because these vectors are so expensive to generate, it is desirable to reuse this

? approximation space over many time steps, so that the cost of finding the Lanczos vectors

can be amortized over these many steps.

a° °'
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These considerations allow the statement of a relatively concrete version of the proposed
reduced coordinate algorithm. Some of the details of this algorithm will be discussed in the
next section, and relatives of this algorithm obtained by modifications of some of the basic

principles discussed above will be given in the final section of this chapter.

Algorithm 3.2: Reduced Coordinate Algorithm

Einds: displacement history for the problem MU + Ku = f

Given: initial conditions on displac.ment and velocity, error tolerance E, length

of time for analysis tmax, time steps h, maximum number of temporal

iterations ITMAX

(1) Initialization: evaluate initial modes of problem and arrange them as the

columns of Q

(2) For t = ti to tmax

(2a) For i = 1 to ITMAX

solve (i) + R (i)y = g for estimate of reduced solution y(tn)

evaluate residual r = (i)Wy + R i)y - g

if 11 r II < e, then
iteration has converged
accept estimate yn for solution at time t = tn
break to next time step

else if i < ITMAX
continue iteration

else
iteration has not converged in ITMAX steps

if time step has not been subincremented then
subincrement time step h and continue from (2)

else if projection basis Q has not been updated
calculate new basis Q and continue from (2a)

else
terminate algorithm due to lack of convergence

I,

41
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Computational Considerations

The algorithm of the last section is still somewhat nebulous, so this section is devoted to

clarifying some important basic ideas. The most important questions include "how
expensive is this algorithm?", "what should the dimension of the approximating subspace
be?", and "what can go wrong with this scheme?". These questions will be addressed in

that order.

The most expensive part of almost any Finite-Element analysis is the formation and

solution of the governing matrix equation. The cost of forming the element matrices can be
very difficult to quantify, but in many nonlinear problems it may be the most expensive

step. For an unreduced problem, the cost of performing one iteration of a time-stepping
scheme can be decomposed into the cost of forming the matrix equation from element

contributions and of solving the resultant set. The element cost can be represented by:

NELEM*FORMCOST
.7.

where NELEM is the number of elements and FORMCOST is an estimate for the average

cost of forming an element matrix. The cost of solution of the system of equations
increases like:

"." NEQ*NBAND2

where NEQ is the number of equations and NBAND is the bandwidth (in some average

sense, if a "profile" solver is used). There may be other costs associated with a Finite-
Element analysis, but these two types are typically the largest fraction of the computational

expense. In this case the total cost of the solution can be estimated by:

COST = ax*NELEM*FORMCOST + P*NEQ*NBAND2 Eqn 3.19

for some scalars ot and P.

In a reduced coordinate algorithm, the system of equations can be formed by performing

the reduction (pre- and post-multiplication by Q or QT) at the global or at the element level.

Usually, this calculation would be done at the element level to save storage space, so the
formation of the equations would involve computational effort that grows like:

4%
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NELEM*FORMCOST + y*NMOD2

where NMOD is the number of modes in the reduced formulation. The parameter y

depends on the size of the element matrices, and this size helps to determine whether the

formation of the element arrays or their transformation into reduced form constitutes the
larger cost. Once the reduced arrays are found, the solution costs for the reduced model at

each iteration step grow like:

NMOD3

So the total cost of the reduced model for one iteration can be estimated to be:

a*NELEM*FORMCOST + 8NMOD 2 + E*NMOD 3  Eqn 3.20

Although it is difficult to compare Eqns 3.19 and 3.20 since the coefficients of each term
are unknown, there are a few conclusions that can be drawn:

(1) The cost of forming the element matrices represents a computational overhead that

must be performed for either method. If this cost constitutes the major fraction of
the effort required, then the two algorithms will be competitive.

(2) The cost of solving the system of equations is very different for the two methods.

Whenever the bandwidth and the number of equations grow simultaneously (i.e. in

all but one-dimensional problems), the cost of solving the reduced equations has
4the potential to be much cheaper that that associated with an unreduced problem.

In particular, for large two-dimensional and almost all three-dimensional problems,

unless an inordinately large number of modes are required for the solution, the
reduced algorithm will be cheaper to implement at each iteration.

The next important question to be addressed involves the size of the approximating

subspace required for good accuracy. This question is very difficult to answer in general
terms, because a small residual error in the reduced problem may correspond to a large

error in the actual unreduced problem. In turn, this error in the large discretized model may
represent an even larger mistake in the setting of the underlying continuous problem.
Knowing how many modes to include in a solution is a little like knowing (a priori) how

many elements will be sufficient to gain a given accuracy in an arbitrary Finite-Element

-4 . . , .. ., ,: ..4 . . ... -, :.:.. ,
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discretization. Because the problem is satisfied only in a projected sense, it is not clear
what the actual (unprojected) error is. Nonetheless, there are a few suggestions that can be

made:

(1) If the forcing function can be represented by a spatial term f (such as in an

earthquake problem, where this vector is the product of the mass matrix and a

vector of influence coefficients) the norm of the projection error (I - QQT)f can be

monitored. Once this error decreases to some preset tolerance (e.g. 5%), it is clear
that enough modes have been found so as to model the spatial variation in the

loading function. (Recall that (I - QQT)f the component of f that is orthogonal to

" . the columns of Q in the "usual" inner-product for Rn.) It should be noted that this
approach is related to monitoring the modal participation factors for the particular

problem.

(2) Regardless of the number of modes chosen, it is probably a good idea to rerun the
reduced analysis with more modes, in order to compare the original simulation to
this "refined solution". If no major changes are found in the results, there is some
hope that the reduced solution exhibits the most important mechanical behavior of

the model problem. When the reduced method is used for the purposes of an
inexpensive preliminary design, an unreduced solution can also be used for

.comparison purposes.

(3) If the problem being solved is linear, then the reduced stiffness can be diagonalized

once, and then the cost of performing each step of the algorithm is negligible, since
the matrices need not be reformed at each step, and no equations need to be solved.

- In this case, it is inexpensive to add modes, and so refined analyses with more

vectors in the projection basis are a practical approach to checking for convergence.

Finally, the question of what can go wrong with the scheme should be addressed. As will
be seen in the next chapter, if the physical interpretation of the projection space is
inconsistent with the physical interpretation of the unknowns sought in the temporal

..5 integration scheme, poor results can be obtained even when the (projected) residual norm is

small. In addition, if many modes are considered in a large problem, the formation of the
reduced matrices may involve appreciable computational error. For this reason, it is
recommended that the evaluation and solution of the reduced problem be carried out in

"-52
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hig-her- precision arithmetic, if possible. For instance, if the element stiffness matrices are
evaluated as 32-bit reals, then it is appropriate to store and manipulate the reduced matrices

QTAQ, QTMQ, and QTf as 64-bit floating-point numbers. Element assembly for an

unreduced formulation merely involves summing the element terms into the global arrays,
but for a reduced formulation, it involves the formation of many matrix inner product

multiplications. It is well known that accumulation of inner products in double precision is
an inexpensive means for reducing the propagation of round-off error, and it is clear that as
long as the reduced matrices are relatively small, the cost of solving these equations in

- double-precision arithmetic is not a serious computational burden.

Comparison with Related Algorithms

* The use of modal methods in linear dynamics has a rich history, including the standard
analysis technique known as "normal mode analysis". The use of Lanczos vectors and the
application of modal methods to nonlinear problems is a more recent development, but
there are still dozens of recent references in this field. This section will therefore be
confined to the consideration of only several related publications, divided into three general

topics:

(1) "classical" mode-superposition for nonlinear problems
(2) Lanczos and related schemes for linear problems

(3) Lanczos and related schemes for nonlinear problems

What might be termed "classical" mode-superposition techniques involve the use of
~.15 eigenvectors of the linearized problem for generating approximate solutions for the

nonlinear model. This approach is taken by several authors, including (Nickell, 1975),

(Bathe and Gracewski, 1981), (Geschwinder, 1981), and others. A more recent work
(Idelsohn and Cardona, 1985) considers the use of eigenvectors combined with "modal

- . derivatives", and includes some emphasis on updating the modes during the calculations.

The use of Lanczos vectors in an inverse (non-shifted) setting has been explored for linear
problems by (Wilson, et.al., 1982) and (Nour-Omid and Clough, 1984) for general linear
problems. Wilson's reference includes an ingenious rediscovery of the Lanczos Algorithm
from a physical standpoint of what might be termed "neglected inertial forces". Trying to
account for these neglected forces leads naturally to the Krylov Sequence and to an

O,

-.1 " T , :,-", .:.3 , ~ '- .'. '- '." " -",:, '. _'_ " -",, - ' ' ' - .", ",- ' ' - ' ' , -, -, " , ,-V - ,. " ,



Chapter 3: Development of the Proposed Algorithm Page 3.27

4

algorithm that is roughly equivalent to the Lanczos Algorithm with complete
reorthogonalization. Nour-Omid and Clough present similar results in the framework of

the Lanczos Algorithm, and use the more efficient three-term recurrence to generate a basis
for the projection space. Several papers involving this approach to different problems

(Bayo and Wilson, 1984a), (Bayo and Wilson, 1984b) and (Wilson and Bayo, 1986) have

also appeared in the literature. Since all these problems are linear, the reduced equations of
motion can be diagonalized once, and then many of the computational considerations of the
last section do not apply. In particular, the problem of consistency between the projection

basis and the Newmark unknowns does not appear to be a concern when the equations are

expressed in a diagonal form.

2%'

The use of Lanczos and related methods on nonlinear problems is a more difficult topic.
Application of the Krylov Sequence to solve a linear problem (one resulting from one step

* of a nonlinear iteration scheme, for instance) can be shown (Golub, 1985) to lead to the

well-known Conjugate Gradient Method for the iterative solution of positive-definite linear

systems. Alternatively, these calculations can be rearranged so that the projection solution
involving the Krylov Sequence yields the Lanczos Algorithm in a direct (i.e. non-inverse)

setting. This approach is taken by (Nour-Omid, Parlett, and Taylor, 1983) to develop a
Newton-Lanczos procedure for the solution of nonlinear problems. Newton's Method is
used to linearize the nonlinear model, and the resulting system of linear equations is solved
via a Lanczos Method. This approach is obviously related to the proposed algorithm,
differing in that the projection basis is constantly updated, and in the fact that the Lanczos

Algorithm is used in a non-inverse setting. Applying the Lanczos algorithm in this fashion
allows the projection space to be recalculated at each step (so that the projection space is

always associated with the current pencil (K(t), M(t)), instead of the pencil associated with
some earlier time step), but leads to two disadvantages. First, the projection basis is
associated with the largest eigenvalues, which are the least important in the approximation
of the solution (recall the Fredholm Alternative Theorem). In simple terms, this approach

converges from the "wrong" end of the spectrum, which might be expected to cause
difficulties if the coefficient matrix is ill-conditioned. Second, the Krylov Subspace is
invariant with respect to a shift, so this approach cannot simply incorporate a frequency

shift for the identification of resonance modes in the approximate solution. Nonetheless,
the algorithm presented appears to be efficient and reliable, and performs well on a variety
of problems, including a interesting nonlinear problem with a singular stiffness matrix. In
addition, this approach can be applied to indefinite systems, so it appears to show much

promise for the practical solution of many important nonlinear problems.

U,
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Chapter 4: Example Problems and Results

Introduction

The reduced coordinate algorithm developed in the last chapter was motivated by
considerations of accuracy, computational efficiency, and minimization of storage. In

theory, it appears that the proposed method would be useful for solving many large
'' problems, but the true test of any algorithm is found in how well it actually solves practical

engineering problems. The verification of any algorithm must therefore eventually include

the solution of "real-world" problems.

* The purpose of this chapter is to consider the solution of two representative problems in

dynamics, using both an "unreduced" formulation (direct step-by-step integration of the full

* equations of motion) and the proposed reduced coordinate algorithm. These two problems

are relatively simple ones, so that the behavior of the solution can be evaluated easily and
the algorithms compared without unnecessary confusion. Although the problems are not as

"-"" complex as many in mechanics, they are not contrived. In fact, this simplicity will be seen
to be a serious handicap for the reduced method, so that good performance on these simple

problems can be taken as evidence of even better results on larger, more intractable models.

The problems considered in this chapter involve free vibration of elastic solids subjected to
initial disturbances. The first problem is that of a linear beam whose free vibrations are

." constrained by a nonlinear support. This beam problem is essentially one-dimensional, so,1d,"

that the solution history for the entire beam can be displayed in one three-dimensional plot

involving space, time, and displacement. This characteristic makes it easy to compare the

methods used. The second problem involves the free vibration of a relatively stiff building

that is founded in a softer soil deposit, and subjected to a blast loading. This model is

much more typical of most problems in engineering mechanics, as it involves larger
systems of equations, larger bandwidths, and dissimilar materials. The effect of the type

of integration scheme used is the most important aspect of this problem, and since the
"N geometry is two-dimensional, tL solution history is much harder to visualize.

Extensions of the reduced coordinate algorithm to more difficult problems including

material nonlinearities and dissipative (as opposed to dynamic) time-dependence can be

found in (Mish, 1987). Extensions of this method to include multiple phases (soil-fluid-
p-..,. 
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structure problems) and alternative projection bases are discussed in Chapter 5 of this

document.

Beam with Nonlinear Support

The first problem considered involves the free vibration of the beam shown in Figure 4.1.

This uniform beam is initially displaced into the shape given by the first mode of vibration,

and released at time t = 0. After one quarter of the beam's fundamental period has elapsed,
the free end of the beam comes in contact with the support, and the displacement field

becomes a much more complicated function of time. Four different solutions are

considered:

(1) Direct integration of the unreduced problem with a discretization involving 10
beam elements and a time step of 0.01 second.

(2) Direct integration of the unreduced problem with 20 elements and a time step of

0.005 seconds.
(3) Reduced algorithm using three Lanczos vectors and the same data of solution (1)

(4) Reduced algorithm using three Lanczos eigenvectors and the data of (1)

9

Length L

/
Uniform Beam

Beam Properties: Nonlinear Support:
El = 1 u(L) 0
L= I
p= I

Figure 4.1: Beam Geometry and Properties

The transverse displacement of the tip of the beam is shown in Figure 4.2. Note that all the
methods used show exact agreement until the barrier is hit by the tip of the beam, and
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relatively similar results afterwards. In this problem, a Newmark scheme involving
incremental accelerations was used in conjunction with a projection basis with the physical

interpretation of beam displacements. This choice was made to realize the simple iteration

scheme of the acceleration form of Newmark's method, while maintaining the interpretation
of the Lanczos vectors as generalized displacement coordinates. In general, this choice
might be expected to lead to some numerical difficulties (as will be seen in the next example
in this chapter), since it amounts to forcing the incremental accelerations at each step to
have the shape of the estimates for the lowest eigenvectors of the displacement-based
problem. However, this beam problem has so much required continuity (continuity of

displacement and its first derivative) that this inconsistency is not a problem, and the
*2 reduced solution is well-behaved. This can be taken as a demonstration of the fact that

some "well-behaved" problems do not require the sort of considerations of consistency

(between primary unknowns in the temporal integration and primary unknowns in the
generation of projection vectors) that were discussed in the last chapter.

Direct Integration, Refined Mesh

Direct Integration
3 Lanczos Vectors

.. . . . . . . .................. 3 Eigenvectors

J 'A

Displacement e

Time

Initial

Conditions lree leaim

Figure 4-.2: Tip DisplacementI lihttr

2
.-

:i. . . . . .
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Figures 4.3 through 4.6 show the behavior of the four solution histories. Note that the
reduced solutions show a little less high-frequency behavior (since the higher frequencies

have been filtered by the projection scheme), and thus more closely approximate the

smoother" solution obtained by subdividing the spatial and temporal discretizations.

In general, the reduced coordinate algorithm required about twice as much computational
work as the unreduced formulation for this problem. While that may seem like poor

performance, it is actually very efficient, given the analysis of the last chapter. This
problem is one-dimensional, and so the bandwidth is very small (half-bandwidth = 4) and

does not -row as the mesh is refined. Thus, in a one-dimensional problem like this one,
the cost of solving the unreduced system of equations grows linearly with the number of
nodes. The reduced algorithm cannot compete in this setting, since it is designed to be

efficient for problems where the bandwidths are large and grow larger as the mesh is
refined. (The next problem is a better example of this sort of growth.)

m Time

Direct Integation with
~Refined Mesh and
• .- Shorter Time Steps

Barrer

I iuure -1.3 Results of Refined Unreduced Solution (20 Elements)

• " " " " . . ' " ' " " ' " "I". " ' ' a . ,. . . , . ' " ' , . ' , ,, '.,
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Time

Direct Integration

Tim

3 Lanczos Vectors

'. Barrier

Figure 4.5: Results for Lanczos Vector Reduction (10 Elements)
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, Time
'.

3 Eigenvectors4.

Barrier

Figure 4.6: Results for Lanczos Eigenvector Reduction (10 Elements)

Blast Load on Soil-Structure System

. The second problem considered involves the dynamic response of a building founded in

relatively soft soil. The building is loaded by a blast pressure of 2 psi for a duration of ten
seconds. In the first five seconds, the blast load is uniform, and in the second five the load

decreases linearly from 2 psi back to zero. This problem is the first step in a more complex
analysis in (Mish, 1987) involving the use of bounding surface plasticity for the modelling
of the nonlinear behavior of the soil. For the problem considered herein, both the soil and

A the building are taken to be linear elastic, with material properties given by:

Esoil = 300 ksi V oil = 0.2 psil= 0.125 ksf

Ebldg = 7500 ksi Vbldg = 0.18 Pbldg = 0.150 ksf

l'. J,"

p
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The geometry of the problem is shown in Figure 4.7, and the appropriate boundary

conditions are illustrated in Figure 4.8 (this figure also shows the location of two particular

elements that are used to monitor the behavior of all the analyses).

y  14- 20 ft M Building (E = 7500 ksi)

.I Soil (E = 300 ksi)' . '10 ] Oft
,', ., 240 ft

160 Nodes

90 f128 Elements

4 500 ft x

Figure 4.7: Blast Problem Geometry and Materials

Blast Load of 2 psi -- Element 34 - Foundation
10 second duration *

Element 66 - Bottom of Building

u = v ; 0 along this boundary .

Figure 4.8: Boundary Conditions for Blast Problem

Three types of analysis are considered for this particular problem:

(1) The direct solution of the full equations of motion using an unreduced

formulation. In this case, incremental accelerations are the primary, unknown in

the Newmark iteration.

6% -' ' -.- .-. .. +. .. . .,.o.. ...- ,.. ... .,, +... ... ., ,,. ... . . .. .. , ... ,,. .... ..... -,' -+-. .,- ..- -.-*-.
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(2) A reduced formulation using Lanczos vectors from the displacement form of the

problem for a projection space, applying the incremental acceleration form of

Newmark's Method (as in the beam problem considered earlier).

(3) A reduced formulation using the same Lanczos vectors as in analysis (2), except

using a Newmark-Newton iteration involving incremental displacements as the

pnmary unknowns.

In cases (2) and (3), anywhere from one to six Lanczos vectors were used, and all of these

vectors were generated using the initial acceleration as a starting vector. This choice

corresponds to choosing the initial mode to correspond to the pseudo-static response to the

intial applied force. Results will be reported in the following interpretation for from one to

three vectors. Adding vectors beyond a three-dimensional subspace did not appreciably

increase the accuracy of the analysis, but began to increase the computational effort. In this

problem, the reduced algorithm typically used about half as much computer time as did the

unreduced problem (which is not surprising since the size of the equation set and the

associated bandwidth are much larger than in the beam example). In addition, most of the

computer effort for the reduced solution involved the computational overhead of formation

of stiffness matrices, which were evaluated at each step for this linear problem in order to

.4 model more accurately the performance of these schemes in a nonlinear setting. The

• , existence of this computational overhead manifested itself in the fact that the increase in size

of the reduced problem from one to three vectors produced only a marginal change in the

computational effort required for the analysis. Given the operations counts considered in

the last chapter, it appears for two- and three-dimensional problems, the reduced algorithm

will be very inexpensive compared to unreduced solution techniques. It should be noted

that this problem is only a coarse mesh for a relatively small two-dimensional problem. It

is expected that this reduced algorithm will soon be used by the authors on problems that

are orders of magnitude larger than this one. Finally, another expense for the reduced

method is that the code used to do the reduced problem is heavily instrumented for

purposes of evaluation ot the algorithm. (For instance, the reduced program does most of

the work of the unreduced one in order to keep "two set of books" for comparisons of the

methods while the proposed algorithm is being modified and optimized.) The program

used to solve the unreduced problem is much closer to a "production code" than the one

used for the reduced algorithm.

The shapes of the displacement fields for the first three Lanczos vectors ndcs') are

shown in figure 49. These paterns of displacement are magnified a few thousand timcs

el
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because the normalization of these modes with respect to the mass matrix yields actual

displacement components that are on the order of thousandths of a foot. As may be noticed

in Figure 4.9, the shape of the displaced building in the first mode appears to corresponds

to a rigid rotation of the building under the applied load, and the next two modes

demonstrate some bending behavior of the building.

(a) Model
Blast Loading

Magnification: 5000x

(b) Mode 2
Blast Loading

Magnification• 5000x

I£,-

_J'I

(C) Mode 3
Blast Loading

SMagnification: 5000x

'p

Figure 4.9: Modes for the Blast Problem

In order to more clearly see the stress state corresponding to these modes, the normal and

shear stresses for the first three modes are shown in Figures 4 10 - 4. 12. Figure 4. 1

-iearlv shoAs the distribution of hending stress in the building. \Aith the tIrst moxc

S'.
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corresponding to the building acting as a cantilever, and the second and third modes

showing bending stresses more characteristic of a simply- supported beam. The shear

stresses shown in Figure 4.12 also demonstrate this result.

(a) Mode 1Stress (12sf
(Lanczos Vector) N!.C 2.25

* . 5 0 C

(b) Moe2Stress (psf)
(Lanczos Vector) N 5C

(c) Mode 3 StreSs (p250

(Lanczos Vector) 5. C-

c.C

Fig2ure 4. 10: Modal S-tresses a, for the Blast Problem

StA
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(a) Mode 1 Stress (psf)
(Lanczos Vector) E8 .000 12. 00

*4.COO 8.000

- -- -- --------- 0 .0 4 .000

"m-4.000 0.0

01-8.000 -4. 000

0-12.00 -8.0OCC

"(b) Mode 2 Stress (psf)
(Lanczos Vector) 0 60.00 9C. CC

M 30.00 6C. 30

0O.0 30.00C

. -30.00 0.0

0-60.00 -30.00

--- - - -- -- -- - - - 90.Oo -60 .00

(c) Mode 3 Stress (psf)

(Lanczos Vector) E30.00 45. C

M. 1 5s.00 3 0. :C
- - - - -- -- --- -- M 0 . 1C 3 .0 0

S5.o0 15.2

030 . , -:5 .2

0 -45.0, -3C .2

Figure 4.11: Modal Stresses ay for the Blast Problem
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(a) Mde 1Stress (psf)
(Lanczos Vector) E2 -C 1

E-2 1. C _-

(b) IMode 2 Stress (p2sf)
* (Lanczos Vector) E

0~~~~ ~~ - ---- **. ------------- **~*- --

0-22 . - - 1

-30. C -2 2

-:(c) Mode 3 Stress (psf)
* (Lanczos Vector) E .C

------------ -~ ~ ~ ~ - --- - - - --- - - - - -- - - 5 ,

Fiozure 4.12: Modal Stresses -to for the Blast Problem

T'he horizontal displacements at the mid-height and the bottom of the buildin- are shown in

f igure 4. 13. The solution history illustrated is for a forty-second period showing the tenl-

seodbast and the following thirty seconds of free-vibration. The solutions for thle

Unreduced problem and for all the reduced problems involvingz incremental displacenits

are essentially coincident. ;o these reduced results are not plotted. The solution for -,he

reduced problem using one mode and incremental accelerations as primary Linkno iN~
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shows a pronounced "drift" with time. This drift gets worse as modes are added, so the
results for a larger set of Lanczos vectors are not shown. What is happening here is that
the incremental accelerations at a given step are not particularly similar to the displacement
projection basis, and so the projection solution obtained (while satisfying the equilibrium

equations in a projected sense) is not very accurate in the setting of the larger problem. In
the beam problem, the more stringent continuity requirements of the model blurred the
distinction between the approximate subspace for the solution and the type of unknown
solved for in the temporal integration scheme. In this problem, the obvious interpretation is
that the temporal integration scheme must use a solution that is consistent with the
approximate solution space.

Results involving stress histories in the elements highlighted in Figure 4.8 are shown in
Figures 14-18 (element 34, in the soil layer), and in Figures 19-23 (element 66, at the
bottom of the building). Note that Figure 15 (the history for the reduced method using a
standard Newmark iteration) shows the same pronounced drift in the oscillatory stress
states. Figure 19 shows that, for the bottom of the building, the entire solution has been
drowned out by this drift. In this case, forcing the acceleration to take the shape of the
displacement modes guarantees huge displacements and stresses for the solution history.
This clearly shows that care must be taken to use modal projection methods with

--- appropriate time-stepping schemes, especially in nonlinear settings where the reduced
problem cannot be diagonalized.

In conclu'ion, it should be reiterated that the reduced coordinate scheme has produced
accurate answers on these example problems, and that it can be implemented relatively
easily in many Finite Element codes. The algorithm appears to show a great deal of
promise for the solution of large problems, especially since it is competitive with standard
methods on smaller problems (such as these two) where an unreduced formulation has a
computational advantage.

w''
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4 0:_ - Unreduced Formulation
(Incremental Acceleration)

One Lanczos Vector
(Incremental Acceleration)

0

Time
(seconds)

0

(In both cases, the results from the reduced formulation
with incremental displacements as primary unknowns

. - -are coincident with the unreduced results shown

Tien
(seconds

'-

S- !Unreduced Formu non
,- -ru--mental Accele non)

-- One Lanczos Vector
(Incremental Accelerat _
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Blast Loading
Unreduced Formulation'"."'a '. , ''J/€ Incremental Acceleration I,,,"

" . ' " T i m e
Stress ax (seconds)

.--P" Stress ay
• ",- - ,,,,,,, Stress t x

O'

Figure 4.14: Element Stresses for Unreduced Problem

Blast Loading
got One Lanczos Vector

Incremental Acceleration

2-30. 1

- ~ Time :
. (seconds)

SStress oCx
. - Stress o,,

•..". . ', Stress 'rxy

Figure .4.15: Element Stresses for Inconsistent Reduction
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Blast Loading
One Lanczos Vector

'-- Incremental Displacement

Time(seconds)

-250 --- Stress a,%'"A -2 Stesa
- Stress T

"',0 H, Str'ess 'txy

Figure 4.16: Element Stresses for Reduced Problem (1 Mode)

5 00

Blast Loading
Two Lanczos Vectors p
Incremental Displacement

A 
(seconds)

"Stress (y

Z.- Stress a,

" Stress T v

" .foSre,,, ,r Reduced Problem 2 \1ode>
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Blast Loading
* Two Lanczos Vectors

Incremental Displacement

(seconds)

-Stress

' -. eminiStress ar
- xy

Figure 4.22: Element Stresses for Reduced Problem (2 Modes)

Blast Loading
Three Lanczos Vectors

* Incremental Displacement
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Chapter 5: Conclusions

Conclusions

The proposed research has been concerned with the reducuon of large mechanical problems

to a more manageable size. The results of the last chapter show that the reduced coordinate

algorithm suggested in this document can be used to achieve this reduction. %,hile

preserving the important mechanical behavior of the original model. Through the use ot

this method, many large models can be solved on smaller machines, and present!%

intractable problems can be solved approximately on larger computers. The proposed

reduced coordinate algorithm represents an attractive alternative formulation to direct

methods for solving many important problems in mechanics

Suggestions for Further Research

The denvations and results presented in this document represent an attempt to develop and

apply this proposed algorithm to some large problems in mechanics, but these results are

only a first step towards a more general method that can be used on a wide variety of

problems. In this section. some suggestions for future work will be outlined and

discussed.

S1) Reduced coordinate analysis of problems involving soil-fluid-structure interactions,

The original goal of this ongoing research was to model large problem, that 'erc

intractable using a direct (i.e. non-reduced) approach. An excellent example of this type ot

problem involves the vibration of a structure t'at rests upon a saturated soil. The dynami,:

behavior of this system involves the solid mechanics problem of a soil-structure ,stem.

hut this behavior is tightly coupled to the flow problem of water in the pores of the soil It

-'' the soil permeability is small, then somc simplifying assumptions about the relauve

" displacement of the soil and fluid may be m.ide, but the low permeability and high bulk

mxulus for the soil-water svstem render the system nearly incompressible, % hich results

in a difficult numerical problem. Conversely, if the soil is very perncable, the

inconipressihilt,, is less of a concern, but the relative displacement of the solid and fluid

•onmplcjte the kinematics of the problem. In either case. an acc'urate analsis can he

computationally very expensive.

The mnodal aleorithm can be used to reduce the size of this type of problem to a more



Chagncr f. Cciclu, iuns

manageable level. It is proposed to use the reduced algorithm onl several large soil tluid

str-ucture problems wo determine vAhether it pert -orms w~ell in this .citing, and to find out

%hat t% pc of reduced cordinate% %ork best This research A-ill require considerable haisi,

w~ork to be able to model the physics of the problem. as, well as recasting the resulting

direct analysis into an appropriate reduced form. Previous research into the nonlinear

material behavior oif soils with lovw perrneahiltv. as well as similar ongoing research tor

granular soMis, 'A Ill be Used to model the respo~nse of the soil, and this response,. A ill be the

pritiarn source ot nonlinearities in these problems

( erliato to different types ot modes.

The research to date has been developed theoretically from the standpoiint that an orthogonal

erof mnodes is available for projection of the large problem onto a smaller solution

subspace In the research completed to date, these moxdes have included exact eigenvectors

and Lanczo% vectors for some particular state of the matriv equation of motion ItI is

proposed to consider what other modes might be used for a soIlution, and vAhether different

parts oft a coupled problem might require a "mixing' of types of mxlesc It may also he

helpful to inclulde modecs that represent generalized derivatives of the eigenv ectkors tit

Lainczos vectors. Somec research has been done along these lines (ldelsohn and ('ardoina.

19j using exact eigenvectors and derivatives. It may be vworihvhile to develop a.i

extend this line of research to the case oft tAnczo% vectors.

1Implementation of Adaptive Strategy

T-he siriiie hig gest o)hsracle to, the use of almost any non linear algorithmi is that the analv st ;N

),etn presenrted A ith a btv~i Idering v arietv of error tolerances, ,rep slzes. ant! Solut ion

paramrietecrs that must he c.hosen before the analys.,is can begin Oner of the moT11 inipo)rtaiir

Properties tit a us~eful a i g ri thni is that it insulates the anal> st fromn as mnan% M these

dfeclisi ns Is p ssihNe I (r in stan.e, man v. integzration schemes can be structured so thatth

.41 Ji i thrn aind n4i t he j~er, J!eCerIMCn the SIM Ot afn qppropriate in te iratim i step.,d;'2
the rtep si/ I () the data ind m lut i n 4)t the probiem vw ihour an, ;nierv.ent io n on the part t01

the anial> st Plie proposed reduced C'w~rdinate algorithm requires more parameter% than a
direct Unreduced formiulatioin. siply because it needs exact]%, the same data as the direct

~cheme. ind ik o requires, lec isic'n s as 'o the n umber it rmodes to) be used ind !he error
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toleranc,,es for the algvnthms ito generate these mod~es (among other things). One ot the

most pressing requirements for the efficient implCentation oft this proposecd method is~ that

the algorithm be capable of finding reasonable values for these solution parameters. and ot

adaptively varying these quantities in response to the results obtained.

All three of these topics are presently being studied, and the algorithm is being modified in

response to developments in these and other areas. The results of these tests and

e~aluations wsill he reported in appropriate journals.

IL
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